Меню

Из чего состоит аналого цифровое преобразование. Аналого-цифровые преобразователи, назначение, структура, принцип действия

Интересное

Для удобства статья будет разбита на 2 части.

Часть I

АЦП или аналогово-цифровое преобразование.

В аналоговой аппаратуре аналоговый звук имеет вид непрерывного электрического сигнала, компьютерная техника, в свою очередь работает только с цифровыми данными - следовательно звук в компьютере имеет цифровой вид.

Думаю у вас уже возникла некая путаница между «звуками». Что бы не было недопонимании рассмотрим что такое цифровой звук и как аналоговый преобразуется «в цифру».

Цифровой звук - способ представления звукового сигнала посредством дискретных численных значений его амплитуды.

Как обычно - постараюсь объяснить все по-проще. Немного повторюсь.

Звуковая волна представляет собой сложную функцию изображающую зависимость ее амплитуды от времени.

Для оцифровки этой волны следует описать ее, сохранив дискретное значение к конкретных точках.

Значение амплитуды звуковой волны нужно измерить в каждой временной точке, а полученное значение записать в виде чисел. Но, из-за невозможности фиксирования значения амплитуды с точностью 100%, их приходится записывать в округленном виде. Что как следствие влечет небольшие искажения исходного сигнала. Иными словами будет происходить как бы приближение этой функции по амплитудной и временной координатным осям.

Как видим, процесс оцифровки сигнала состоит из двух этапов.

1.Первый - дискретизации (осуществления выборки)

2.Второй - квантования.

Дискретизация - процесс получения значений величин преобразуемого сигнала в определенные промежутки времени. Иными словами это как бы «выборка» сигнала по заданным значениям.

Квантование - представляет собой процесс замены полученных значений амплитуды сигнала с максимально приближенной точностью.

Как и говорилось выше - при преобразовании сигнала приходится округлять значения из-за невозможности фиксировать «реальное» значение амплитуды с идеальной(по сути - бесконечной) точностью. Для этого компьютерам понадобился бы более огромный объем оперативной памяти (больше чем 1Тб), а уточнять можно до бесконечности, что как следствие влечет создание ОЗУ с бесконечным объемом памяти.

На точность округления влияет уровень квантования(или же разрядность квантования). Чем больше количество уровней, тем на меньшую величину округляется значение амплитуды, что как следствие получаем меньшую величину погрешности.

Исходя из выше изложенного уже можно сделать вывод, о том что оцифровка сигнала представляет собой фиксирование амплитуды звуковой волны через определенный интервалы времени, и запись полученного с минимальной величиной погрешности.

Напрашивается и другой вывод. Чем выше частота дискретизации и разрядность квантования, тем точнее выходит описание полученного сигнала.

Качество напрямую зависит от параметров выбранных для оцифровки. Это - частота дискретизации (выражается в Кгц) и разрядность (выражается в Битах).

Иными словами - чем выше разрядность и частота дискретизации, тем более качественным получается сигнал, и тем больше получается объем оцифрованных данных. Поэтому тут следует искать «золотую середину» между весом и качеством.

Теорема Коте́льникова (в англоязычной литературе- теорема Найквиста- Шеннона или теорема отсчётов) гласит, что, если аналоговый сигнал имеет финитный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой, строго большей удвоенной верхней частоты.

В «переводе на нормально-человеческий язык»,что бы получить наиболее полную информацию о звуке, допустим в частотном диапазоне до 22 000 Гц, необходима дискретизация с частотой, не менее 44.1Кг.

Это говорит о том, что нет смысла сильно гнаться за высокими частотами дискретизации, так как частота 44.1Кгц охватывает весь диапазон частот, которые способен слышать человек, и даже немного выше.

Часть II

Цифро-аналоговое преобразование.

Что бы после оцифровки иметь возможность послушать звук, его нужно обратно преобразовать в аналоговый.

Аналоговый сигнал может обрабатываться усилителями и другими аналоговыми устройствами и воспроизводиться акустическими системами.

Преобразовывает цифровой сигнал в аналоговый - цифро-аналаговый преобразователь(ЦАП). Процесс преобразования представляет собой процедуру обратную АЦП.

Современные системы воспроизводят и записывают звук через аудио интерфейс, задачей которого является ввод и вывод аудио информации, т..е. Это и есть устройство преобразования аналогового сигнала в цифровой и обратно.

Работу аудио интерфейса можно объяснить более простыми словами.

Вначале входной аналоговый звук попадает в аналоговый вход(или микшер), после этого он направляется в АЦП, который его квантует и дискретизирует.. Результатом является получение цифрового аудио сигнала который по шине идет в компьютер и получается цифровой звук.

При выводе аудио информации происходит аналогичный процесс, только в обратную сторону. Поток данных проходит через ЦАП,который преобразует числа определяющие амплитуду сигнала в электрический - аналоговый сигнал.

Схематично, все это выглядит, как представлено на рис.1

Хочу отметить, что если аудио интерфейс оборудован интерфейсом для обмена цифровыми данными, то при работе с цифровым аудио никакие его аналоговые блоки не задействованы - таким образом, обходя преобразователи, вы будете сохранять звук практически таким какой он есть.

В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

Введение

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.


Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Типы АЦП

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

  • АЦП параллельного преобразования (прямого преобразования, flash ADC)
  • АЦП последовательного приближения (SAR ADC)
  • дельта-сигма АЦП (АЦП с балансировкой заряда)
Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

АЦП прямого преобразования

АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.

Архитектура АЦП прямого преобразования изображена на рис. 1

Рис. 1. Структурная схема АЦП прямого преобразования

Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.

Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.

Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

АЦП последовательного приближения

Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:

1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.

Рис. 2. Структурная схема АЦП последовательного приближения.

Таким образом, АЦП последовательного приближения состоит из следующих узлов:

1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).

2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.

3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.

Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

Дельта-сигма АЦП

И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

Рис.3. Структурная схема сигма-дельта АЦП.

Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».

Рис. 4. Сигма-дельта АЦП как следящая система

Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к .

На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

Рис. 6. Структурная схема сигма-дельта модулятора

Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

Y(s) = X(s)/(s+1) + E(s)s/(s+1)

То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра

Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

Немного истории

Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.

Рис. 8. Первый патент на АЦП

Рис. 9. АЦП прямого преобразования (1975 г.)

Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

Рис. 10. АЦП прямого преобразования (1970 г.)

Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

Литература

W. Kester. ADC Architectures I: The Flash Converter. Analog Devices, MT-020 Tutorial.

Большинство датчиков и исполнительных устройств автоматиче­ских систем работает с аналоговыми сигналами. Для ввода таких сигна­лов в ЭВМ их необходимо преобразовать в цифровую форму, т.е. дискретизироватъ по уровню и во времени. Эту задачу решают АЦП. Обрат­ную задачу, т.е. превращение квантованного (цифрового) сигнала в не­прерывный, решают ЦАП.

АЦП и ЦАП являются основными устройствами ввода-вывода ин­формации в цифровых системах, предназначенных для обработки анало­говой информации или управления каким-либо технологическим процес­сом.

Важнейшие характеристики АЦП и ЦАП:

1) Вид аналоговой величины, являющейся входной для АЦП и выходной для ЦАП (напряжение, ток, временной интервал, фаза, частота, угловое и линейное перемещение, освещенность, давление, темпе­ратура и т.п.). Наибольшее распространение получили преобразо­ватели, в которых входной (выходной) аналоговой величиной явля­ется напряжение, т.к. большинство аналоговых величин сравни­тельно легко преобразуются в напряжение.

2) Разрешающая способность и точность преобразования (разре­шающая способность определяется количеством двоичных разрядов кода или возможным количеством уровней аналогового сигна­ла, точность определяется наибольшим значением отклонения аналогового сигнала от цифрового и наоборот).

3) Быстродействие, определяемое интервалом времени от момента подачи сигнала опроса (запуска) до момента достижения выход­ным сигналом установившегося значения (ед. микросекунд, десят­ки наносекунд)

В любом преобразователе выделяют цифровую и аналоговую части. В цифровой производятся кодирование и декодирование цифровых сигна­лов, их запоминание, счет, цифровое компарирование (сравнение), выра­ботка логических сигналов управления. Для этого используют: дешифра­торы, мультиплексоры, регистры, счетчики, цифровые компараторы, логические элементы.

В аналоговой части преобразователя производятся операции: усиле­ния, сравнения, коммутации, сложения и вычитания аналоговых сигна­лов. Для этого используются аналоговые элементы: ОУ, аналоговые ком­параторы, ключи и коммутаторы, резистивные матрицы и т.д.

Преобразователи выполняются в виде цифровых и аналоговых ИМС или БИС.

Строятся на основе, представления любого двоичного числа X в виде суммы степеней числа два.


Схема преобразования четырехраз­рядного двоичного числа

Х=Х3*2 3 +Х2*2 2 +X1*2 1 +Х0 *2 0

В пропорциональное ему напряжение.

X i =0 или 1. Для ОУ

К= –U вых /U оп =R oc /R

R – общее сопротивление параллельно включенных ветвей, в которых были замкнуты ключи X.


U оп =U c – опорное напряжение, подаваемое на вход ОУ через R.

R oc – сопротивление ОС.

Х=8Х3+4Х2+2Х1+1Х0, U вых =U оп *R oc /R o (8X3+4X2+2X1+lX0)

U вых =(–U оп *R oc /R o)*Х; –U o п *R oc /R 0 =K – коэффициент пропорцио­нальности, для каждой схемы величина постоянная.

- для нашей схемы.

Для увеличения числа разрядов необходимо увеличивать число рези­сторов (R о /16; R o /32 и т.д.), при отличии резисторов в 1000 раз точ­ность снижается.

Для устранения этого недостатка в многоразрядных ЦАП весовые коэффициенты каждой ступени задают последовательным делением опорного напряжения с помощью резистивной матрицы. (R-2R)



По такому принципу построена схема 10-разрядного интегрального ЦАП типа К572ПА1 выполненного по КМОП технологии.

Достоинства: малая потребляемая мощность, высокое быстродей­ствие не более 5мкс., хорошая точность.

на каждый резистор 2R 2 МДП транзистора, подключаемые 1 и 0 (через инвертор). Четные (вх=1) соед. с вых. 1

Нечетные (вх=0) соед, с вых. 2

По способу преобразования делятся на последовательные, параллельные и последовательно-параллельные.

В последовательных АЦП преобразование аналоговой величины в цифро­вой код идет ступеньками (шагами), последовательно приближаясь к измеряемому напряжению.

Достоинство: простота; недостаток: низкое быстродействие.

В параллельных АЦП входное напряжение одновременно сравнивают с Х– опорными напряжениями. При этом результат получается за один шаг, но необходимы большие аппаратурные затраты.

Быстродействие; недостаток: сколько опорных напряжений, столько компараторов.

Входное напряжение Состояние компаратора Двойное число
U c , U 7 6 5 4 3 2 1 2 1 0
U c <0,5 0 0 0 0 0 0 0 0 0 0
U c ≤U c <1,5 0 0 0 0 0 0 1 0 0 1
1,5≤U c <2,5 0 0 0 0 0 1 1 0 1 0
2,5≤U c <3,5 0 0 0 0 1 1 1 0 1 1
3,5≤U c <4,5 0 0 0 1 1 1 1 1 0 0
4,5≤U c <5,5 0 0 1 1 1 1 1 1 0 1
5,5≤U c <6,5 0 1 1 1 1 1 1 1 1 0
6,5≤U c 1 1 1 1 1 1 1 1 1 1


Процесс преобразования непрерывного сигнала в код состоит из квантования и кодирования.

Квантование – это представление непрерывной величины в виде конечного числа дискретных значений (например, уровней потенциалов), а кодирование – это перевод комбинаций дискретных значений в двоичные числа для обработки информации в ЭВМ.

Из входных устройств преобразующих аналоговые величины в соответствующие коды двоичных чисел комбинаций, интерес представляют устройства типа напряжение-число.

Рассмотрим:



bc = t∙tg α =>

Входное напряжение преобразуется в промежуточную величину «интервал времени», которая в свою очередь преобразуется в цифровой код (временная система кодирования).

Входное напряжение U вх сравнивается с пилообразным напряжением U п изменяющимся по линейному закону.

Отрезки b 1 c 1 , b 2 c 2 , b 3 c 3 представляют собой дискретное значение входного напряжения. Интервал от начала сравнения до момента равенства напряжений U вх = U п является катетом треугольника с углом наклона α. Все три треугольника подобны, следовательно, tg α = const. Поэтому можно сказать, что отрезки bc в каком-то масштабе пропорциональны соответствующему интервалу времени t. Следовательно измерение дискретных значений напряжений можно заменить измерением пропорциональных отрезков времени, заменяемых двоичным числом.

ГСИ – генератор синхроимпульсов;

И – схема совпадений (логическое умножение);

Сч – счетчик;

Т – триггер;

ДИ – датчик импульсов;

ГПИ – генератор пилообразных импульсов;

= – схема сравнения или компаратор;

ГСИ вырабатывает серию импульсов определенной частоты, определяющий частоту преобразования, импульсы поступают на вход счетчика через схему И, которой управляет триггер. При нулевом состоянии триггера на выходе схемы И – 0 и на вход счетчика импульсы не поступают. Начало временного интервала формирует управляющий импульс УИ, устанавливающий триггер в 1 и определяющий начало отсчета импульсов в счетчике.

Uп
Uвх
ГСИ
Конец временного интервала задается управляющим импульсом УИ2, который устанавливает триггер в 0, и прекращает поступление импульсов с ГСИ в счетчик. Схема сравнения (аналоговый компаратор) сравнивает преобразованное напряжение U вх с опорным напряжением U п, вырабатываемым ГПИ.

В момент совпадения обоих напряжений единица на выходе компаратора вырабатывает импульс УИ2, устанавливающий триггер в 0, определяющий конец временного интервала.

Число прошедших на счетчик импульсов – это код, пропорциональный дискретному значению преобразованного напряжения.

Точность преобразования определяется точностью сравнения напряжений и положением управляющего импульса относительно импульсов. ГСИ.

Аналого-цифровые преобразователи предназначены для преобразования аналогового сигнала (обычно напряжения) в цифровую форму (последовательность цифровых значений напряжения, измеренных с равными промежутками времени). Одним из важнейших параметров аналого-цифровых преобразователей является разрядность его выходных данных. Именно этот параметр обеспечивает отношение сигнал/шум преобразования и в конечном итоге динамический диапазон цифрового сигнала. Разрядность АЦП стараются увеличивать для увеличения отношения сигнал/шум. Отношение сигнал/шум аналого-цифрового преобразователя можно определить по следующей формуле:

SN = N × 6 + 3,5 (дБ)

где N — количество двоичных разрядов на выходе АЦП.

Не менее важным параметром АЦП является время получения на его выходе следующего отсчета цифрового сигнала. Получить одновременно высокую скорость преобразования и большую разрядность является очень сложной задачей, для решения которой было разработано большое количество видов аналого-цифровых преобразователей. Рассмотрим их основные характеристики и области применения.

Наиболее скоростным видом АЦП являются . В этих видах АЦП требуется передавать большие потоки данных, поэтому они передаются в параллельном виде. Это приводит к тому, что параллельные АЦП обладают большим количеством внешних выводов. В результате габариты микросхем параллельных АЦП достаточно велики. Еще одной особенностью параллельных АЦП является значительный ток потребления. Перечисленные недостатки данного вида АЦП являются платой за высокую скорость преобразования аналогового сигнала в цифровую форму его представления. Скорость преобразования в параллельных АЦП достигает 500 миллионов отсчетов в секунду (500 MSPS). По теореме Котельникова максимальная частота входного сигнала может достигать 250 МГц. В качестве примера можно назвать микросхему AD6641-500 фирмы Analog Devices или микросхему ISLA214P50 фирмы Intersil.

Для достижения еще более высоких скоростей преобразования используют параллельное соединение несколько параллельных АЦП, работающих по очереди. При этом для того, чтобы обеспечить передачу данных к обрабатывающей микросхеме приходится использовать несколько параллельных шин (по одной на каждый АЦП). В качестве примера подобного вида аналого-цифровых преобразователей можно назвать микросхему АЦП MAX109 фирмы Maxim, обеспечивающую скорость преобразования до 2,2 GSPS.

Немного более экономичным видом АЦП являются . В этих видах АЦП в процессе аналого-цифрового преобразования участвуют цифро-аналоговые преобразователи. Высокая скорость подачи на выход отсчетов аналогового сигнала реализуется за счет конвейерной обработки. В результате для последовательно-параллельных FWG скорость преобразования и скорость выдачи на выход очередного цифрового отсчета не совпадают. В качестве примера можно назвать микросхемы AD6645 и AD9430 фирмы Analog Devices.

Самым распространенным видом АЦП в настоящее время являются . Несмотря на то, что в данных видах аналого-цифровых преобразователей невозможна конвейерная обработка данных, а значит время преобразования и период выдачи данных на выходе АЦП совпадают, данный вид АЦП обладает достаточным быстродействием для работы в широком диапазоне задач.

В настоящее время дискретизация сигнала в устройствах выборки и хранения (УВХ) и преобразование напряжения в двоичные числа (цифровые отсчеты сигнала) производятся в одной микросхеме. Типовая схема включения АЦП с параллельным выходом приведена на рисунке 1.


Рисунок 1. Схема включения параллельного АЦП ADC0804

В этой схеме для начала аналого-цифрового преобразования микропроцессор или программируемая логическая схема должны подать сигнал начала преобразования (в данной схеме это сигнал WR). После завершения преобразования микросхема АЦП выдает сигнал готовности данных INTR и микропроцессор может считать двоичный код, соответствующий входному напряжению. При преобразовании сигнала по теореме Котельникова частота дискретизации f д поступает на вход WR и ее стабильность обеспечивается микропроцессором.

Следует отметить, что при обработке низкочастотных сигналов часто требуется выполнять одновременно и аналого-цифровое преобразование и цифро-аналоговое преобразование. В ряде случаев требуется в одной микросхеме объединять несколько аналоговых каналов, например, стереообработка звука. Кроме того, в данных видах микросхем в их состав включаются низкочастотные или полосовые фильтры, операционные усилители, что позволяет подавать на их вход сигнал непосредственно с выхода микрофона, а с выхода — на телефон. Подобный вид микросхем АЦП/ЦАП получил особое название — кодеки.

Литература:

  1. Analod-Digital Conversion, Walt Kester editor, Analog Devises, 2004. — 1138 p.
  2. Mixed-Signal and DSP Design Techniques ISBN_0750676116, Walt Kester editor, Analog Devises, 2004. — 424 p.
  3. High Speed System Application, Walt Kester editor, Analog Devises, 2006. — 360 p.

Вместе со статьей "Виды аналого-цифровых преобразователей (АЦП)" читают:

Поскольку информация на входах цифровых устройств обычно представляется в двоичном коде, а большинство исполнительных механизмов для автоматизированного управления технологическими процессами (исполнительные двигатели, электромагниты и тому подобные), как правило, реагируют на непрерывно изменяющиеся уровни напряжения или тока, для преобразования информации из цифровой в аналоговую форму используют цифроаналоговые преобразователи (ЦАП) . Помимо широкого промышленного применения ЦАП используются в современной бытовой электронике, например, в системах высококачественного воспроизведения звука, записанного в цифровой форме на световых носителях информации.

В системах автоматизированного управления для получения информации о состоянии контролируемого промышленного оборудования применяют различного рода преобразователи (датчики) неэлектрических величин в электрические сигналы, которые чаще всего представляются в аналоговом виде. Для последующей обработки этой информации при помощи цифровых устройств такие сигналы должны быть предварительно преобразованы в цифровую форму. В самом общем случае преобразование аналог – цифра выполняют в два этапа. В начале непрерывно изменяющийся сигнал заменяют его значениями в дискретные моменты времени, что называют дискретизацией во времени. Затем эти значения сигнала подают на вход аналого-цифровых преобразователей (АЦП) , которые с некоторым шагом квантования по уровню представляют их цифровым эквивалентом в виде двоичного кода.

Основными характеристиками ЦАП и АЦП являются быстродействие и погрешность преобразования, определяемая абсолютной погрешностью преобразования и относительной разрешающей способностью. Быстродействие ЦАП и АЦП характеризуется временем преобразования: для ЦАП это отрезок времени после поступления входного двоичного кода до установления его выходного аналогового сигнала; для АЦП – интервал времени от его пуска до момента получения выходного двоичного кода.

Абсолютная погрешность преобразования равна половине шага квантования по уровню . При шаге квантования , например, n – разрядный ЦАП должен обеспечивать различных значений выходного напряжения, максимальное значение которого называют напряжением шкалы , связанным с соотношением . Относительной разрешающей способностью называют отношение шага квантования по уровню к напряжению шкалы. Для n-разрядных ЦАП и АЦП .

Цифроаналоговые преобразователи. ЦАП представляют собой устройства для создания аналогового выходного значения напряжения (или тока), соответствующего числовому эквиваленту двоичного цифрового кода на его входе. Зависимость выходного параметра ЦАП, например, напряжения на его выходе, от кодового эквивалента входного сигнала называют характеристикой преобразования. На рисунке 3.36а представлена характеристика преобразования четырёхразрядного ЦАП.

Принцип действия простейшего ЦАП поясняет схема на рисунке 3.36б. Основу ЦАП составляет матрица резисторов, подключаемых ко входу операционного усилителя ключами, которые управляются двоичным кодом (например, параллельным кодом регистра или счётчика).

Коэффициенты передачи по входам , , и равны соответственно:

где - числа, принимающие значения 0 и 1 в зависимости от положения соответствующих ключей.

Выходное напряжение ЦАП определяется суммой:


Таким образом, четырёхразрядный двоичный код преобразуется в уровень в диапазоне от 0 до 15 , где - шаг квантования. Для уменьшения погрешности квантования необходимо увеличивать число двоичных разрядов ЦАП.

Микросхемы ЦАП после номера серии в обозначении первой имеют букву П (для всех преобразователей), а второй – букву А. На рисунке 3.36в представлена интегральная схема типа К572ПА1, представляющая собой выполненный на основе КМОП - технологии десятиразрядный ЦАП с временем преобразования не более 5 микросекунд. К сожалению, при разработке этой интегральной схемы технологически не удалось на одной подложке вместе с КМОП – ключами и (R-2R)-матрицей выполнить и схему ОУ, поэтому ЦАП К572ПА1 всегда дополняют внешней микросхемой ОУ, подключение которой также показано на рисунке 3.36в. В заключение отметим, что ЦАП К572ПА1 обеспечивает уникальную возможность выполнить операцию умножения аналоговой величины на другую величину, задаваемую двоичным цифровым кодом на входах D0-D9, при этом результат умножения представляется также в аналоговом виде выходным напряжением ЦАП. По этой причине ЦАП К572ПА1 иногда называют умножающим.

Аналогово-цифровые преобразователи АЦП представляют собой устройство для сопоставления цифрового двоичного кода уровню аналогового сигнала на его входе Характеристикой преобразования АЦП называют зависимость числового эквивалента двоичного кода на выходе АЦП от нормированного к напряжению шкалы входного аналогового сигнала . Она также представлена многоступенчатой ломаной линией, подобной изображённой на рисунке 3.36а, с той лишь разницей, что для четырёхразрядного АЦП оси абсцисс и ординат меняются местами.

В настоящее время наибольшее распространение получила классификация интегральных АЦП на основе рассмотрения характера развития в них процесса преобразования во времени. Согласно такому подходу все интегральные АЦП можно разбить на три типа: последовательного действия (развёртывающего типа) и параллельного действия (параллельного типа). К АЦП развёртывающего типа относят АЦП с последовательным счётом, с поразрядным уравновешиванием (последовательных приближений) и интегрирующие АЦП.

Структурная схема АЦП последовательного счёта представлена на рисунке 3.37. Постоянное (в течение времени действия импульса считывания, длительность которого выбирается чуть меньше периода дискретизации ) положительное напряжение поступает на неинвертирующий вход ОУ DA1, работающего в режиме компаратора. На инвертирующий вход DA1 подаётся выходное напряжение ЦАП DA2 (например, с генератора линейно изменяющегося напряжения), цифровые входы которого подключены к выходам двоичного счётчика СТ2. В исходное нулевое состояние счётчик СТ2 устанавливается импульсом на его входе сброса. АЦП запускается импульсом на входе «Пуск», разрешающем работу счётчика СТ2, на счётный вход которого поступают тактовые импульсы, следующие с частотой повторения .