Меню

Сведения и факты об атмосфере. Атмосфера Земли

Изделия

На уровне моря 1013,25 гПа (около 760 мм ртутного столба). Средняя по глобусу температура воздуха у поверхности Земли 15°С, при этом температура изменяется примерно от 57°С в субтропических пустынях до -89°С в Антарктиде. Плотность воздуха и давление убывают с высотой по закону, близкому к экспоненциальному.

Строение атмосферы . По вертикали атмосфера имеет слоистую структуру, определяемую главным образом особенностями вертикального распределения температуры (рисунок), которое зависит от географического положения, сезона, времени суток и так далее. Нижний слой атмосферы - тропосфера - характеризуется падением температуры с высотой (примерно на 6°С на 1 км), его высота от 8-10 км в полярных широтах до 16-18 км в тропиках. Благодаря быстрому убыванию плотности воздуха с высотой в тропосфере находится около 80% всей массы атмосферы. Над тропосферой располагается стратосфера - слой, который характеризуется в общем повышением температуры с высотой. Переходный слой между тропосферой и стратосферой называется тропопаузой. В нижней стратосфере до уровня около 20 км температура мало меняется с высотой (так называемая изотермическая область) и нередко даже незначительно уменьшается. Выше температура возрастает из-за поглощения УФ-радиации Солнца озоном, вначале медленно, а с уровня 34-36 км - быстрее. Верхняя граница стратосферы - стратопауза - расположена на высоте 50-55 км, соответствующей максимуму температуры (260-270 К). Слой атмосферы, расположенный на высоте 55-85 км, где температура снова падает с высотой, называется мезосферой, на его верхней границе - мезопаузе - температура достигает летом 150-160 К, а зимой 200-230 К. Над мезопаузой начинается термосфера - слой, характеризующийся быстрым повышением температуры, достигающей на высоте 250 км значений 800-1200 К. В термосфере поглощается корпускулярная и рентгеновская радиация Солнца, тормозятся и сгорают метеоры, поэтому она выполняет функцию защитного слоя Земли. Ещё выше находится экзосфера, откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от атмосферы к межпланетному пространству.

Состав атмосферы . До высоты около 100 км атмосфера практически однородна по химическому составу и средняя молекулярная масса воздуха (около 29) в ней постоянна. Вблизи поверхности Земли атмосфера состоит из азота (около 78,1% по объёму) и кислорода (около 20,9%), а также содержит малые количества аргона, диоксида углерода (углекислого газа), неона и других постоянных и переменных компонентов (смотри Воздух).

Кроме того, атмосфера содержит небольшие количества озона, оксидов азота, аммиака, радона и др. Относительное содержание основных составляющих воздуха постоянно во времени и однородно в разных географических районах. Содержание водяного пара и озона переменно в пространстве и времени; несмотря на малое содержание, их роль в атмосферных процессах весьма существенна.

Выше 100-110 км происходит диссоциация молекул кислорода, углекислого газа и водяного пара, поэтому молекулярная масса воздуха уменьшается. На высоте около 1000 км начинают преобладать лёгкие газы - гелий и водород, а ещё выше атмосфера Земли постепенно переходит в межпланетный газ.

Наиболее важная переменная компонента атмосферы - водяной пар, который поступает в атмосферу при испарении с поверхности воды и влажной почвы, а также путём транспирации растениями. Относительное содержание водяного пара меняется у земной поверхности от 2,6% в тропиках до 0,2% в полярных широтах. С высотой оно быстро падает, убывая наполовину уже на высоте 1,5-2 км. В вертикальном столбе атмосферы в умеренных широтах содержится около 1,7 см «слоя осаждённой воды». При конденсации водяного пара образуются облака, из которых выпадают осадки атмосферные в виде дождя, града, снега.

Важной составляющей атмосферного воздуха является озон, сосредоточенный на 90% в стратосфере (между 10 и 50 км), около 10% его находится в тропосфере. Озон обеспечивает поглощение жёсткой УФ-радиации (с длиной волны менее 290 нм), и в этом - его защитная роль для биосферы. Значения общего содержания озона меняются в зависимости от широты и сезона в пределах от 0,22 до 0,45 см (толщина слоя озона при давлении р= 1 атм и температуре Т = 0°С). В озоновых дырах, наблюдаемых весной в Антарктике с начала 1980-х годов, содержание озона может падать до 0,07 см. Оно увеличивается от экватора к полюсам и имеет годовой ход с максимумом весной и минимумом осенью, причём амплитуда годового хода мала в тропиках и растёт к высоким широтам. Существенной переменной компонентой атмосферы является углекислый газ, содержание которого в атмосфере за последние 200 лет выросло на 35%, что объясняется в основном антропогенным фактором. Наблюдается его широтная и сезонная изменчивость, связанная с фотосинтезом растений и растворимостью в морской воде (согласно закону Генри, растворимость газа в воде уменьшается с ростом её температуры).

Важную роль в формировании климата планеты играет атмосферный аэрозоль - взвешенные в воздухе твёрдые и жидкие частицы размером от нескольких нм до десятков мкм. Различаются аэрозоли естественного и антропогенного происхождения. Аэрозоль образуется в процессе газофазных реакций из продуктов жизнедеятельности растений и хозяйственной деятельности человека, вулканических извержений, в результате подъёма пыли ветром с поверхности планеты, особенно с её пустынных регионов, а также образуется из космической пыли, попадающей в верхние слои атмосферы. Большая часть аэрозоля сосредоточена в тропосфере, аэрозоль от вулканических извержений образует так называемый слой Юнге на высоте около 20 км. Наибольшее количество антропогенного аэрозоля попадает в атмосферу в результате работы автотранспорта и ТЭЦ, химических производств, сжигания топлива и др. Поэтому в некоторых районах состав атмосферы заметно отличается от обычного воздуха, что потребовало создания специальной службы наблюдений и контроля за уровнем загрязнения атмосферного воздуха.

Эволюция атмосферы . Современная атмосфера имеет, по-видимому, вторичное происхождение: она образовалась из газов, выделенных твёрдой оболочкой Земли после завершения формирования планеты около 4,5 млрд. лет назад. В течение геологической истории Земли атмосфера претерпевала значительные изменения своего состава под влиянием ряда факторов: диссипации (улетучивания) газов, преимущественно более лёгких, в космическое пространство; выделения газов из литосферы в результате вулканической деятельности; химических реакций между компонентами атмосферы и породами, слагающими земную кору; фотохимических реакций в самой атмосфере под влиянием солнечного УФ-излучения; аккреции (захвата) материи межпланетной среды (например, метеорного вещества). Развитие атмосферы тесно связано с геологическими и геохимическими процессами, а последние 3-4 миллиарда лет также с деятельностью биосферы. Значительная часть газов, составляющих современной атмосферы (азот, углекислый газ, водяной пар), возникла в ходе вулканической деятельности и интрузии, выносившей их из глубин Земли. Кислород появился в заметных количествах около 2 миллиардов лет тому назад как результат деятельности фотосинтезирующих организмов, первоначально зародившихся в поверхностных водах океана.

По данным о химическом составе карбонатных отложений получены оценки количества углекислого газа и кислорода в атмосфере геологического прошлого. На протяжении фанерозоя (последние 570 миллионов лет истории Земли) количество углекислого газа в атмосфере изменялось в широких пределах в соответствии с уровнем вулканической активности, температурой океана и уровнем фотосинтеза. Большую часть этого времени концентрация углекислого газа в атмосфере была значительно выше современной (до 10 раз). Количество кислорода в атмосфере фанерозоя существенно изменялось, причём преобладала тенденция к его увеличению. В атмосфере докембрия масса углекислого газа была, как правило, больше, а масса кислорода - меньше по сравнению с атмосферой фанерозоя. Колебания количества углекислого газа оказывали в прошлом существенное влияние на климат, усиливая парниковый эффект при росте концентрации углекислого газа, благодаря чему климат на протяжении основной части фанерозоя был гораздо теплее по сравнению с современной эпохой.

Атмосфера и жизнь . Без атмосферы Земля была бы мёртвой планетой. Органическая жизнь протекает в тесном взаимодействии с атмосферой и связанными с ней климатом и погодой. Незначительная по массе по сравнению с планетой в целом (примерно миллионная часть), атмосфера является непременным условием для всех форм жизни. Наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. При поглощении углекислого газа фотосинтезирующими растениями создаётся органическое вещество, используемое как источник энергии подавляющим большинством живых существ, включая человека. Кислород необходим для существования аэробных организмов, для которых приток энергии обеспечивается реакциями окисления органического вещества. Азот, усваиваемый некоторыми микроорганизмами (азотофиксаторами), необходим для минерального питания растений. Озон, поглощающий жёсткое УФ-излучение Солнца, значительно ослабляет эту вредную для жизни часть солнечной радиации. Конденсация водяного пара в атмосфере, образование облаков и последующее выпадение атмосферных осадков поставляют на сушу воду, без которой невозможны никакие формы жизни. Жизнедеятельность организмов в гидросфере во многом определяется количеством и химическим составом атмосферных газов, растворённых в воде. Поскольку химический состав атмосферы существенно зависит от деятельности организмов, биосферу и атмосферу можно рассматривать как часть единой системы, поддержание и эволюция которой (смотри Биогеохимические циклы) имела большое значение для изменения состава атмосферы на протяжении истории Земли как планеты.

Радиационный, тепловой и водный балансы атмосферы . Солнечная радиация является практически единственным источником энергии для всех физических процессов в атмосфере. Главная особенность радиационного режима атмосферы - так называемый парниковый эффект: атмосфера достаточно хорошо пропускает к земной поверхности солнечную радиацию, но активно поглощает тепловое длинноволновое излучение земной поверхности, часть которого возвращается к поверхности в форме встречного излучения, компенсирующего радиационную потерю тепла земной поверхностью (смотри Атмосферное излучение). В отсутствие атмосферы средняя температура земной поверхности была бы -18°С, в действительности она 15°С. Приходящая солнечная радиация частично (около 20%) поглощается в атмосферу (главным образом водяным паром, каплями воды, углекислым газом, озоном и аэрозолями), а также рассеивается (около 7%) на частицах аэрозоля и флуктуациях плотности (рэлеевское рассеяние). Суммарная радиация, достигая земной поверхности, частично (около 23%) отражается от неё. Коэффициент отражения определяется отражательной способностью подстилающей поверхности, так называемое альбедо. В среднем альбедо Земли для интегрального потока солнечной радиации близко к 30%. Оно меняется от нескольких процентов (сухая почва и чернозём) до 70-90% для свежевыпавшего снега. Радиационный теплообмен между земной поверхностью и атмосферой существенно зависит от альбедо и определяется эффективным излучением поверхности Земли и поглощённым ею противоизлучением атмосферы. Алгебраическая сумма потоков радиации, входящих в земную атмосферу из космического пространства и уходящих из неё обратно, называется радиационным балансом.

Преобразования солнечной радиации после её поглощения атмосферой и земной поверхностью определяют тепловой баланс Земли как планеты. Главный источник тепла для атмосферы - земная поверхность; теплота от неё передаётся не только в виде длинноволнового излучения, но и путём конвекции, а также выделяется при конденсации водяного пара. Доли этих притоков теплоты равны в среднем 20%, 7% и 23% соответственно. Сюда же добавляется около 20% теплоты за счёт поглощения прямой солнечной радиации. Поток солнечной радиации за единицу времени через единичную площадку, перпендикулярную солнечным лучам и расположенную вне атмосферы на среднем расстоянии от Земли до Солнца (так называемая солнечная постоянная), равен 1367 Вт/м 2 , изменения составляют 1-2 Вт/м 2 в зависимости от цикла солнечной активности. При планетарном альбедо около 30% средний по времени глобальный приток солнечной энергии к планете составляет 239 Вт/м 2 . Поскольку Земля как планета испускает в космос в среднем такое же количество энергии, то, согласно закону Стефана - Больцмана, эффективная температура уходящего теплового длинноволнового излучения 255 К (-18°С). В то же время средняя температура земной поверхности составляет 15°С. Разница в 33°С возникает за счёт парникового эффекта.

Водный баланс атмосферы в целом соответствует равенству количества влаги, испарившейся с поверхности Земли, количеству осадков, выпадающих на земную поверхность. Атмосфера над океанами получает больше влаги от процессов испарения, чем над сушей, а теряет в виде осадков 90%. Избыток водяного пара над океанами переносится на континенты воздушными потоками. Количество водяного пара, переносимого в атмосферу с океанов на континенты, равно объёму стока рек, впадающих в океаны.

Движение воздуха . Земля имеет шарообразную форму, поэтому к её высоким широтам приходит гораздо меньше солнечной радиации, чем к тропикам. Вследствие этого между широтами возникают большие температурные контрасты. На распределение температуры в существенной мере влияет также взаимное расположение океанов и континентов. Из-за большой массы океанических вод и высокой теплоёмкости воды сезонные колебания температуры поверхности океана значительно меньше, чем суши. В связи с этим в средних и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неодинаковый разогрев атмосферы в разных областях земного шара вызывает неоднородное по пространству распределение атмосферного давления. На уровне моря распределение давления характеризуется относительно низкими значениями вблизи экватора, увеличением в субтропиках (пояса высокого давления) и понижением в средних и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено, что связано с распределением температуры. Под действием градиента давления воздух испытывает ускорение, направленное от областей с высоким давлением к областям с низким, что приводит к перемещению масс воздуха. На движущиеся воздушные массы действуют также отклоняющая сила вращения Земли (сила Кориолиса), сила трения, убывающая с высотой, а при криволинейных траекториях и центробежная сила. Большое значение имеет турбулентное перемешивание воздуха (смотри Турбулентность в атмосфере).

С планетарным распределением давления связана сложная система воздушных течений (общая циркуляция атмосферы). В меридиональной плоскости в среднем прослеживаются две или три ячейки меридиональной циркуляции. Вблизи экватора нагретый воздух поднимается и опускается в субтропиках, образуя ячейку Хэдли. Там же опускается воздух обратной ячейки Феррела. В высоких широтах часто прослеживается прямая полярная ячейка. Скорости меридиональной циркуляции порядка 1 м/с или меньше. Из-за действия силы Кориолиса в большей части атмосферы наблюдаются западные ветры со скоростями в средней тропосфере около 15 м/с. Существуют сравнительно устойчивые системы ветров. К ним относятся пассаты - ветры, дующие от поясов высокого давления в субтропиках к экватору с заметной восточной составляющей (с востока на запад). Достаточно устойчивы муссоны — воздушные течения, имеющие чётко выраженный сезонный характер: они дуют с океана на материк летом и в противоположном направлении зимой. Особенно регулярны муссоны Индийского океана. В средних широтах движение воздушных масс имеет в основном западное направление (с запада на восток). Это зона атмосферных фронтов, на которых возникают крупные вихри - циклоны и антициклоны, охватывающие многие сотни и даже тысячи километров. Циклоны возникают и в тропиках; здесь они отличаются меньшими размерами, но очень большими скоростями ветра, достигающего ураганной силы (33 м/с и более), так называемые тропические циклоны. В Атлантике и на востоке Тихого океана они называются ураганами, а на западе Тихого океана - тайфунами. В верхней тропосфере и нижней стратосфере в областях, разделяющих прямую ячейку меридиональной циркуляции Хэдли и обратную ячейку Феррела, часто наблюдаются сравнительно узкие, в сотни километров шириной, струйные течения с резко очерченными границами, в пределах которых ветер достигает 100-150 и даже 200 м/с.

Климат и погода . Различие в количестве солнечной радиации, приходящей на разных широтах к разнообразной по физическим свойствам земной поверхности, определяет многообразие климатов Земли. От экватора до тропических широт температура воздуха у земной поверхности в среднем 25-30°С и мало меняется в течение года. В экваториальном поясе обычно выпадает много осадков, что создаёт там условия избыточного увлажнения. В тропических поясах количество осадков уменьшается и в ряде областей становится очень малым. Здесь располагаются обширные пустыни Земли.

В субтропических и средних широтах температура воздуха значительно меняется в течение года, причём разница между температурами лета и зимы особенно велика в удалённых от океанов областях континентов. Так, в некоторых районах Восточной Сибири годовая амплитуда температуры воздуха достигает 65°С. Условия увлажнения в этих широтах весьма разнообразны, зависят в основном от режима общей циркуляции атмосферы и существенно меняются от года к году.

В полярных широтах температура остаётся низкой в течение всего года, даже при наличии её заметного сезонного хода. Это способствует широкому распространению ледового покрова на океанах и суше и многолетнемёрзлых пород, занимающих в России свыше 65% её площади, в основном в Сибири.

За последние десятилетия стали всё более заметны изменения глобального климата. Температура повышается больше в высоких широтах, чем в низких; больше зимой, чем летом; больше ночью, чем днём. За 20 век среднегодовая температура воздуха у земной поверхности в России выросла на 1,5-2°С, причём в отдельных районах Сибири наблюдается повышение на несколько градусов. Это связывается с усилением парникового эффекта вследствие роста концентрации малых газовых примесей.

Погода определяется условиями циркуляции атмосферы и географическим положением местности, она наиболее устойчива в тропиках и наиболее изменчива в средних и высоких широтах. Более всего погода меняется в зонах смены воздушных масс, обусловленных прохождением атмосферных фронтов, циклонов и антициклонов, несущих осадки и усиление ветра. Данные для прогноза погоды собираются на наземных метеостанциях, морских и воздушных судах, с метеорологических спутников. Смотри также Метеорология.

Оптические, акустические и электрические явления в атмосфере . При распространении электромагнитного излучения в атмосфере в результате рефракции, поглощения и рассеяния света воздухом и различными частицами (аэрозоль, кристаллы льда, капли воды) возникают разнообразные оптические явления: радуга, венцы, гало, мираж и др. Рассеяние света обусловливает видимую высоту небесного свода и голубой цвет неба. Дальность видимости предметов определяется условиями распространения света в атмосфере (смотри Атмосферная видимость). От прозрачности атмосферы на различных длинах волн зависят дальность связи и возможность обнаружения объектов приборами, в том числе возможность астрономических наблюдений с поверхности Земли. Для исследований оптической неоднородностей стратосферы и мезосферы важную роль играет явление сумерек. Например, фотографирование сумерек с космических аппаратов позволяет обнаруживать аэрозольные слои. Особенности распространения электромагнитного излучения в атмосфере определяют точность методов дистанционного зондирования её параметров. Все эти вопросы, как и многие другие, изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (смотри Распространение радиоволн).

Распространение звука в атмосфере зависит от пространственного распределения температуры и скорости ветра (смотри Атмосферная акустика). Оно представляет интерес для зондирования атмосферы дистанционными методами. Взрывы зарядов, запускаемых ракетами в верхнюю атмосфера, дали богатую информацию о системах ветров и ходе температуры в стратосфере и мезосфере. В устойчиво стратифицированной атмосфере, когда температура падает с высотой медленнее адиабатического градиента (9,8 К/км), возникают так называемые внутренние волны. Эти волны могут распространяться вверх в стратосферу и даже в мезосферу, где они затухают, способствуя усилению ветра и турбулентности.

Отрицательный заряд Земли и обусловленное им электрическое поле атмосфера вместе с электрически заряженными ионосферой и магнитосферой создают глобальную электрическую цепь. Важную роль при этом играет образование облаков и грозового электричества. Опасность грозовых разрядов вызвала необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атмосферные радиопомехи, получившие название атмосфериков (смотри Свистящие атмосферики). Во время резкого увеличения напряжённости электрического поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отдельных вершинах в горах и др. (Эльма огни). Атмосфера всегда содержит сильно меняющееся в зависимости от конкретных условий количество лёгких и тяжёлых ионов, которые определяют электрическую проводимость атмосферы. Главные ионизаторы воздуха у земной поверхности - излучение радиоактивных веществ, содержащихся в земной коре и в атмосфере, а также космические лучи. Смотри также Атмосферное электричество.

Влияние человека на атмосферу. В течение последних столетий происходил рост концентрации парниковых газов в атмосфере вследствие хозяйственной деятельности человека. Процентное содержание углекислого газа возросло с 2,8-10 2 двести лет назад до 3,8-10 2 в 2005 году, содержание метана - с 0,7-10 1 примерно 300- 400 лет назад до 1,8-10 -4 в начале 21 века; около 20% в прирост парникового эффекта за последнее столетие дали фреоны, которых практически не было в атмосфере до середины 20 века. Эти вещества признаны разрушителями стратосферного озона, и их производство запрещено Монреальским протоколом 1987 года. Рост концентрации углекислого газа в атмосфере вызван сжиганием всё возрастающих количеств угля, нефти, газа и других видов углеродного топлива, а также сведением лесов, в результате чего уменьшается поглощение углекислого газа путём фотосинтеза. Концентрация метана увеличивается с ростом добычи нефти и газа (за счёт его потерь), а также при расширении посевов риса и увеличении поголовья крупного рогатого скота. Всё это способствует потеплению климата.

Для изменения погоды разработаны методы активного воздействия на атмосферные процессы. Они применяются для защиты сельскохозяйственных растений от градобития путём рассеивания в грозовых облаках специальных реагентов. Существуют также методы рассеяния туманов в аэропортах, защиты растений от заморозков, воздействия на облака с целью увеличения осадков в нужных местах или для рассеяния облаков в моменты массовых мероприятий.

Изучение атмосферы . Сведения о физических процессах в атмосфере получают прежде всего из метеорологических наблюдений, которые проводятся глобальной сетью постоянно действующих метеорологических станций и постов, расположенных на всех континентах и на многих островах. Ежедневные наблюдения дают сведения о температуре и влажности воздуха, атмосферном давлении и осадках, облачности, ветре и др. Наблюдения за солнечной радиацией и её преобразованиями проводятся на актинометрических станциях. Большое значение для изучения атмосферы имеют сети аэрологических станций, на которых при помощи радиозондов выполняются метеорологические измерения до высоты 30-35 км. На ряде станций проводятся наблюдения за атмосферным озоном, электрическими явлениями в атмосфере, химическим составом воздуха.

Данные наземных станций дополняются наблюдениями на океанах, где действуют «суда погоды», постоянно находящиеся в определённых районах Мирового океана, а также метеорологическими сведениями, получаемыми с научно-исследовательских и других судов.

Всё больший объём сведений об атмосфере в последние десятилетия получают с помощью метеорологических спутников, на которых установлены приборы для фотографирования облаков и измерения потоков ультрафиолетовой, инфракрасной и микроволновой радиации Солнца. Спутники позволяют получать сведения о вертикальных профилях температуры, облачности и её водозапасе, элементах радиационного баланса атмосферы, о температуре поверхности океана и др. Используя измерения рефракции радиосигналов с системы навигационных спутников, удаётся определять в атмосфере вертикальные профили плотности, давления и температуры, а также влагосодержания. С помощью спутников стало возможным уточнить величину солнечной постоянной и планетарного альбедо Земли, строить карты радиационного баланса системы Земля - атмосферы, измерять содержание и изменчивость малых атмосферных примесей, решать многие другие задачи физики атмосферы и мониторинга окружающей среды.

Лит.: Будыко М. И. Климат в прошлом и будущем. Л., 1980; Матвеев Л. Т. Курс общей метеорологии. Физика атмосферы. 2-е изд. Л., 1984; Будыко М. И., Ронов А. Б., Яншин А. Л. История атмосферы. Л., 1985; Хргиан А. Х. Физика атмосферы. М., 1986; Атмосфера: Справочник. Л., 1991; Хромов С. П., Петросянц М. А. Метеорология и климатология. 5-е изд. М., 2001.

Г. С. Голицын, Н. А. Зайцева.

АТМОСФЕРА
газовая оболочка, окружающая небесное тело. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава данного небесного тела, а также определяются историей его формирования начиная с момента зарождения. Атмосфера Земли образована смесью газов, называемой воздухом. Ее основные составляющие - азот и кислород в соотношении приблизительно 4:1. На человека оказывает воздействие главным образом состояние нижних 15-25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека. Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли. Высокие слои атмосферы - это также и химическая лаборатория, поскольку там в условиях, близких к вакууму, некоторые атмосферные газы под влиянием мощного потока солнечной энергии вступают в химические реакции. Наука, изучающая эти взаимосвязанные явления и процессы, называется физикой высоких слоев атмосферы.
ОБЩАЯ ХАРАКТЕРИСТИКА АТМОСФЕРЫ ЗЕМЛИ
Размеры. Пока ракеты-зонды и искусственные спутники не исследовали внешние слои атмосферы на расстояниях, в несколько раз превосходящих радиус Земли, считалось, что по мере удаления от земной поверхности атмосфера постепенно становится более разреженной и плавно переходит в межпланетное пространство. Сейчас установлено, что потоки энергии из глубоких слоев Солнца проникают в космическое пространство далеко за орбиту Земли, вплоть до внешних пределов Солнечной системы. Этот т.н. солнечный ветер обтекает магнитное поле Земли, формируя удлиненную "полость", внутри которой и сосредоточена земная атмосфера. Магнитное поле Земли заметно сужено с обращенной к Солнцу дневной стороны и образует длинный язык, вероятно выходящий за пределы орбиты Луны, - с противоположной, ночной стороны. Граница магнитного поля Земли называется магнитопаузой. С дневной стороны эта граница проходит на расстоянии около семи земных радиусов от поверхности, но в периоды повышенной солнечной активности оказывается еще ближе к поверхности Земли. Магнитопауза является одновременно границей земной атмосферы, внешняя оболочка которой называется также магнитосферой, так как в ней сосредоточены заряженные частицы (ионы), движение которых обусловлено магнитным полем Земли. Общий вес газов атмосферы составляет приблизительно 4,5*1015 т. Таким образом, "вес" атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м2.
Значение для жизни. Из сказанного выше следует, что Землю от межпланетного пространства отделяет мощный защитный слой. Космическое пространство пронизано мощным ультрафиолетовым и рентгеновским излучением Солнца и еще более жестким космическим излучением, и эти виды радиации губительны для всего живого. На внешней границе атмосферы интенсивность излучения смертоносна, но значительная его часть задерживается атмосферой далеко от поверхности Земли. Поглощением этого излучения объясняются многие свойства высоких слоев атмосферы и особенно происходящие там электрические явления. Самый нижний, приземный слой атмосферы особенно важен для человека, который обитает в месте контакта твердой, жидкой и газообразной оболочек Земли. Верхняя оболочка "твердой" Земли называется литосферой. Около 72% поверхности Земли покрыто водами океанов, составляющими большую часть гидросферы. Атмосфера граничит как с литосферой, так и с гидросферой. Человек живет на дне воздушного океана и вблизи или выше уровня океана водного. Взаимодействие этих океанов является одним из важных факторов, определяющих состояние атмосферы.
Состав. Нижние слои атмосферы состоят из смеси газов (см. табл.). Кроме приведенных в таблице, в виде небольших примесей в воздухе присутствуют и другие газы: озон, метан, такие вещества, как оксид углерода (СО), оксиды азота и серы, аммиак.

СОСТАВ АТМОСФЕРЫ


В высоких слоях атмосферы состав воздуха меняется под воздействием жесткого излучения Солнца, которое приводит к распаду молекул кислорода на атомы. Атомарный кислород является основным компонентом высоких слоев атмосферы. Наконец, в наиболее удаленных от поверхности Земли слоях атмосферы главными компонентами становятся самые легкие газы - водород и гелий. Поскольку основная масса вещества сосредоточена в нижних 30 км, то изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.
Энергообмен. Солнце является главным источником энергии, поступающей на Землю. Находясь на расстоянии ок. 150 млн. км от Солнца, Земля получает примерно одну двухмиллиардную часть излучаемой им энергии, главным образом в видимой части спектра, которую человек называет "светом". Большая часть этой энергии поглощается атмосферой и литосферой. Земля также излучает энергию, в основном в виде длинноволновой инфракрасной радиации. Таким образом устанавливается равновесие между получаемой от Солнца энергией, нагреванием Земли и атмосферы и обратным потоком тепловой энергии, излучаемой в пространство. Механизм этого равновесия крайне сложен. Пыль и молекулы газов рассеивают свет, частично отражая его в мировое пространство. Еще большую часть приходящей радиации отражают облака. Часть энергии поглощается непосредственно молекулами газов, но в основном - горными породами, растительностью и поверхностными водами. Водяной пар и углекислый газ, присутствующие в атмосфере, пропускают видимое излучение, но поглощают инфракрасное. Тепловая энергия накапливается главным образом в нижних слоях атмосферы. Подобный эффект возникает в теплице, когда стекло пропускает свет внутрь и почва нагревается. Поскольку стекло относительно непрозрачно для инфракрасной радиации, в парнике аккумулируется тепло. Нагрев нижних слоев атмосферы за счет присутствия водяного пара и углекислого газа часто называют парниковым эффектом. Существенную роль в сохранении тепла в нижних слоях атмосферы играет облачность. Если облака рассеиваются или возрастает прозрачность воздушных масс, температура неизбежно понижается по мере того, как поверхность Земли беспрепятственно излучает тепловую энергию в окружающее пространство. Вода, находящаяся на поверхности Земли, поглощает солнечную энергию и испаряется, превращаясь в газ - водяной пар, который выносит огромное количество энергии в нижние слои атмосферы. При конденсации водяного пара и образовании при этом облаков или тумана эта энергия освобождается в виде тепла. Около половины солнечной энергии, достигающей земной поверхности, расходуется на испарение воды и поступает в нижние слои атмосферы. Таким образом, вследствие парникового эффекта и испарения воды атмосфера прогревается снизу. Этим отчасти объясняется высокая активность ее циркуляции по сравнению с циркуляцией Мирового океана, который прогревается только сверху и потому значительно стабильнее атмосферы.
См. также МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ . Помимо общего нагревания атмосферы солнечным "светом", значительное прогревание некоторых ее слоев происходит за счет ультрафиолетового и рентгеновского излучения Солнца. Строение. По сравнению с жидкостями и твердыми телами, в газообразных веществах сила притяжения между молекулами минимальна. По мере увеличения расстояния между молекулами газы способны расширяться беспредельно, если им ничто не препятствует. Нижней границей атмосферы является поверхность Земли. Строго говоря, этот барьер непроницаем, так как газообмен происходит между воздухом и водой и даже между воздухом и горными породами, но в данном случае этими факторами можно пренебречь. Поскольку атмосфера является сферической оболочкой, у нее нет боковых границ, а имеются только нижняя граница и верхняя (внешняя) граница, открытая со стороны межпланетного пространства. Через внешнюю границу происходит утечка некоторых нейтральных газов, а также поступление вещества из окружающего космического пространства. Большая часть заряженных частиц, за исключением космических лучей, обладающих высокой энергией, либо захватывается магнитосферой, либо отталкивается ею. На атмосферу действует также сила земного притяжения, которая удерживает воздушную оболочку у поверхности Земли. Атмосферные газы сжимаются под действием собственного веса. Это сжатие максимально у нижней границы атмосферы, поэтому и плотность воздуха здесь наибольшая. На любой высоте над земной поверхностью степень сжатия воздуха зависит от массы вышележащего столба воздуха, поэтому с высотой плотность воздуха уменьшается. Давление, равное массе вышележащего столба воздуха, приходящейся на единицу площади, находится в прямой зависимости от плотности и, следовательно, также понижается с высотой. Если бы атмосфера представляла собой "идеальный газ" с не зависящим от высоты постоянным составом, неизменной температурой и на нее действовала бы постоянная сила тяжести, то давление уменьшалось бы в 10 раз на каждые 20 км высоты. Реальная атмосфера незначительно отличается от идеального газа примерно до высоты 100 км, а затем давление с высотой убывает медленнее, так как изменяется состав воздуха. Небольшие изменения в описанную модель вносит и уменьшение силы тяжести по мере удаления от центра Земли, составляющее вблизи земной поверхности ок. 3% на каждые 100 км высоты. В отличие от атмосферного давления температура с высотой не понижается непрерывно. Как показано на рис. 1, она убывает приблизительно до высоты 10 км, а затем вновь начинает расти. Это происходит при поглощении ультрафиолетовой солнечной радиации кислородом. При этом образуется газ озон, молекулы которого состоят из трех атомов кислорода (О3). Он тоже поглощает ультрафиолетовое излучение, и поэтому этот слой атмосферы, называемый озоносферой, нагревается. Выше температура вновь понижается, так как там гораздо меньше молекул газа, и соответственно сокращается поглощение энергии. В еще более высоких слоях температура вновь повышается вследствие поглощения атмосферой наиболее коротковолнового ультрафиолетового и рентгеновского излучения Солнца. Под воздействием этого мощного излучения происходит ионизация атмосферы, т.е. молекула газа теряет электрон и приобретает положительный электрический заряд. Такие молекулы становятся положительно заряженными ионами. Благодаря наличию свободных электронов и ионов этот слой атмосферы приобретает свойства электропроводника. Полагают, что температура продолжает повышаться до высот, где разреженная атмосфера переходит в межпланетное пространство. На расстоянии нескольких тысяч километров от поверхности Земли, вероятно, преобладают температуры от 5000° до 10 000° С. Хотя молекулы и атомы имеют очень большие скорости движения, а следовательно, и высокую температуру, этот разреженный газ не является "горячим" в привычном смысле. Из-за мизерного количества молекул на больших высотах их суммарная тепловая энергия весьма невелика. Таким образом, атмосфера состоит из отдельных слоев (т.е. серии концентрических оболочек, или сфер), выделение которых зависит от того, какое свойство представляет наибольший интерес. На основании осредненного распределения температур метеорологи разработали схему строения идеальной "средней атмосферы" (см. рис. 1).

Тропосфера - нижний слой атмосферы, простирающийся до первого термического минимума (т.н. тропопаузы). Верхняя граница тропосферы зависит от географической широты (в тропиках - 18-20 км, в умеренных широтах - ок. 10 км) и времени года. Национальная метеорологическая служба США провела зондирование вблизи Южного полюса и выявила сезонные изменения высоты тропопаузы. В марте тропопауза находится на высоте ок. 7,5 км. С марта до августа или сентября происходит неуклонное охлаждение тропосферы, и ее граница на короткий период в августе или сентябре поднимается приблизительно до высоты 11,5 км. Затем с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, где и остается до марта, испытывая колебания в пределах всего 0,5 км. Именно в тропосфере в основном формируется погода, которая определяет условия существования человека. Большая часть атмосферного водяного пара сосредоточена в тропосфере, и поэтому здесь главным образом и формируются облака, хотя некоторые из них, состоящие из ледяных кристаллов, встречаются и в более высоких слоях. Для тропосферы характерны турбулентность и мощные воздушные течения (ветры) и штормы. В верхней тропосфере существуют сильные воздушные течения строго определенного направления. Турбулентные вихри, подобные небольшим водоворотам, образуются под воздействием трения и динамического взаимодействия между медленно и быстро движущимися воздушными массами. Поскольку в этих высоких слоях облачности обычно нет, такую турбулентность называют "турбулентностью ясного неба".
Стратосфера. Вышележащий слой атмосферы часто ошибочно описывают как слой со сравнительно постоянными температурами, где ветры дуют более или менее устойчиво и где метеорологические элементы мало меняются. Верхние слои стратосферы нагреваются при поглощении кислородом и озоном солнечного ультрафиолетового излучения. Верхняя граница стратосферы (стратопауза) проводится там, где температура несколько повышается, достигая промежуточного максимума, который нередко сопоставим с температурой приземного слоя воздуха. На основе наблюдений, проведенных с помощью самолетов и шаров-зондов, приспособленных для полетов на постоянной высоте, в стратосфере установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особенно опасны для высокоскоростных летательных аппаратов. Сильные ветры, называемые струйными течениями, дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и проявляются в верхних слоях тропосферы, но их скорость быстро уменьшается с понижением высоты. Возможно, часть энергии, поступающей в стратосферу (главным образом затрачиваемой на образование озона), оказывает воздействие на процессы в тропосфере. Особенно активное перемешивание связано с атмосферными фронтами, где обширные потоки стратосферного воздуха были зарегистрированы существенно ниже тропопаузы, а тропосферный воздух вовлекался в нижние слои стратосферы. Значительные успехи были достигнуты в изучении вертикальной структуры нижних слоев атмосферы в связи с совершенствованием техники запуска на высоты 25-30 км радиозондов. Мезосфера, располагающаяся выше стратосферы, представляет собой оболочку, в которой до высоты 80-85 км происходит понижение температуры до минимальных показателей для атмосферы в целом. Рекордно низкие температуры до -110° С были зарегистрированы метеорологическими ракетами, запущенными с американо-канадской установки в Форт-Черчилле (Канада). Верхний предел мезосферы (мезопауза) примерно совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца, что сопровождается нагреванием и ионизацией газа. В полярных регионах летом в мезопаузе часто появляются облачные системы, которые занимают большую площадь, но имеют незначительное вертикальное развитие. Такие светящиеся по ночам облака часто позволяют обнаруживать крупномасштабные волнообразные движения воздуха в мезосфере. Состав этих облаков, источники влаги и ядер конденсации, динамика и связь с метеорологическими факторами пока еще недостаточно изучены. Термосфера представляет собой слой атмосферы, в котором непрерывно повышается температура. Его мощность может достигать 600 км. Давление и, следовательно, плотность газа с высотой постоянно уменьшаются. Вблизи земной поверхности в 1 м3 воздуха содержится ок. 2,5ґ1025 молекул, на высоте ок. 100 км, в нижних слоях термосферы, - приблизительно 1019, на высоте 200 км, в ионосфере, - 5*10 15 и, по расчетам, на высоте ок. 850 км - примерно 1012 молекул. В межпланетном пространстве концентрация молекул составляет 10 8-10 9 на 1 м3. На высоте ок. 100 км количество молекул невелико, и они редко сталкиваются между собой. Среднее расстояние, которое преодолевает хаотически движущаяся молекула до столкновения с другой такой же молекулой, называется ее средним свободным пробегом. Слой, в котором эта величина настолько увеличивается, что вероятностью межмолекулярных или межатомных столкновений можно пренебречь, находится на границе между термосферой и вышележащей оболочкой (экзосферой) и называется термопаузой. Термопауза отстоит от земной поверхности примерно на 650 км. При определенной температуре скорость движения молекулы зависит от ее массы: более легкие молекулы движутся быстрее тяжелых. В нижней атмосфере, где свободный пробег очень короткий, не наблюдается заметного разделения газов по их молекулярному весу, но оно выражено выше 100 км. Кроме того, под воздействием ультрафиолетового и рентгеновского излучения Солнца молекулы кислорода распадаются на атомы, масса которых составляет половину массы молекулы. Поэтому по мере удаления от поверхности Земли атомарный кислород приобретает все большее значение в составе атмосферы и на высоте ок. 200 км становится ее главным компонентом. Выше, приблизительно на расстоянии 1200 км от поверхности Земли, преобладают легкие газы - гелий и водород. Из них и состоит внешняя оболочка атмосферы. Такое разделение по весу, называемое диффузным расслоением, напоминает разделение смесей с помощью центрифуги. Экзосферой называется внешний слой атмосферы, выделяемый на основе изменений температуры и свойств нейтрального газа. Молекулы и атомы в экзосфере вращаются вокруг Земли по баллистическим орбитам под воздействием силы тяжести. Некоторые из этих орбит параболические и похожи на траектории метательных снарядов. Молекулы могут вращаться вокруг Земли и по эллиптическим орбитам, как спутники. Некоторые молекулы, в основном водорода и гелия, имеют разомкнутые траектории и уходят в космическое пространство (рис. 2).



СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ И ИХ ВЛИЯНИЕ НА АТМОСФЕРУ
Атмосферные приливы. Притяжение Солнца и Луны вызывает в атмосфере приливы, подобные земным и морским приливам. Но атмосферные приливы имеют существенное отличие: атмосфера сильнее всего реагирует на притяжение Солнца, тогда как земная кора и океан - на притяжение Луны. Это объясняется тем, что атмосфера нагревается Солнцем и в дополнение к гравитационному возникает мощный термальный прилив. В целом механизмы образования атмосферных и морских приливов сходны, за исключением того, что для прогноза реакции воздуха на гравитационные и термические воздействия необходимо учитывать его сжимаемость и распределение температуры. Не до конца понятно, почему полусуточные (12-часовые) солнечные приливы в атмосфере преобладают над суточными солнечными и полусуточными лунными приливами, хотя движущие силы двух последних процессов гораздо мощнее. Раньше считалось, что в атмосфере возникает резонанс, усиливающий именно колебания с 12-часовым периодом. Однако наблюдения, проведенные при помощи геофизических ракет, свидетельствуют об отсутствии температурных причин такого резонанса. При решении этой проблемы, вероятно, следует учитывать все гидродинамические и термические особенности атмосферы. У земной поверхности близ экватора, где влияние приливных колебаний максимально, оно обеспечивает изменение атмосферного давления на 0,1%. Скорость приливных ветров составляет ок. 0,3 км/ч. Благодаря сложной термической структуре атмосферы (особенно наличию минимума температуры в мезопаузе) приливные воздушные течения усиливаются, и, например, на высоте 70 км их скорость примерно в 160 раз выше, чем у земной поверхности, что имеет важные геофизические последствия. Считается, что в нижней части ионосферы (слой Е) приливные колебания перемещают ионизированный газ вертикально в магнитном поле Земли, и следовательно, здесь возникают электрические токи. Эти постоянно возникающие системы токов на поверхности Земли устанавливаются по возмущениям магнитного поля. Суточные вариации магнитного поля достаточно хорошо согласуются с расчетными величинами, что убедительно свидетельствует в пользу теории приливных механизмов "атмосферного динамо". Электрические токи, возникающие в нижней части ионосферы (слой Е), должны куда-то перемещаться, и, следовательно, цепь должна замкнуться. Аналогия с динамо-машиной становится полной, если рассматривать встречное движение как работу двигателя. Предполагается, что обратная циркуляция электрического тока осуществляется в более высоком слое ионосферы (F), и этим встречным потоком могут объясняться некоторые своеобразные черты этого слоя. Наконец, приливный эффект должен порождать также горизонтальные потоки в слое Е и, следовательно, в слое F.
Ионосфера. Пытаясь объяснить механизм возникновения полярных сияний, ученые 19 в. предположили, что в атмосфере существует зона с электрически заряженными частицами. В 20 в. экспериментально были получены убедительные доказательства существования на высотах от 85 до 400 км слоя, отражающего радиоволны. В настоящее время известно, что его электрические свойства являются результатом ионизации атмосферного газа. Поэтому обычно этот слой называют ионосферой. Воздействие на радиоволны происходит главным образом из-за наличия в ионосфере свободных электронов, хотя механизм распространения радиоволн связан с наличием крупных ионов. Последние также представляют интерес при изучении химических свойств атмосферы, поскольку они активнее нейтральных атомов и молекул. Химические реакции, протекающие в ионосфере, играют важную роль в ее энергетическом и электрическом балансе.
Нормальная ионосфера. Наблюдения, проведенные при помощи геофизических ракет и спутников, дали массу новой информации, свидетельствующей, что ионизация атмосферы происходит под воздействием солнечной радиации широкого спектра. Основная ее часть (более 90%) сосредоточена в видимой части спектра. Ультрафиолетовое излучение с меньшей длиной волны и большей энергией, чем у фиолетовых световых лучей, испускается водородом внутренней части атмосферы Солнца (хромосферы), а рентгеновское излучение, обладающее еще более высокой энергией, - газами внешней оболочки Солнца (короны). Нормальное (среднее) состояние ионосферы обусловлено постоянным мощным излучением. Регулярные изменения происходят в нормальной ионосфере под воздействием суточного вращения Земли и сезонных различий угла падения солнечных лучей в полдень, но происходят также непредсказуемые и резкие изменения состояния ионосферы.
Возмущения в ионосфере. Как известно, на Солнце возникают мощные циклически повторяющиеся возмущения, которые достигают максимума каждые 11 лет. Наблюдения по программе Международного геофизического года (МГГ) совпали с периодом наиболее высокой солнечной активности за весь срок систематических метеорологических наблюдений, т.е. с начала 18 в. В периоды высокой активности яркость некоторых областей на Солнце возрастает в несколько раз, и они посылают мощные импульсы ультрафиолетового и рентгеновского излучения. Такие явления называются вспышками на Солнце. Они продолжаются от нескольких минут до одного-двух часов. Во время вспышки извергается солнечный газ (в основном протоны и электроны), и элементарные частицы устремляются в космическое пространство. Электромагнитное и корпускулярное излучение Солнца в моменты таких вспышек оказывает сильное воздействие на атмосферу Земли. Первоначальная реакция отмечается через 8 мин после вспышки, когда интенсивное ультрафиолетовое и рентгеновское излучение достигает Земли. В результате резко повышается ионизация; рентгеновские лучи проникают в атмосферу до нижней границы ионосферы; количество электронов в этих слоях возрастает настолько, что радиосигналы почти полностью поглощаются ("гаснут"). Дополнительное поглощение радиации вызывает нагрев газа, что способствует развитию ветров. Ионизированный газ является электрическим проводником, и когда он движется в магнитном поле Земли, проявляется эффект динамо-машины и возникает электрический ток. Такие токи могут в свою очередь вызывать заметные возмущения магнитного поля и проявляться в виде магнитных бурь. Эта начальная фаза занимает лишь короткое время, соответствующее продолжительности солнечной вспышки. Во время мощных вспышек на Солнце в космическое пространство устремляется поток ускоренных частиц. Когда он направлен в сторону Земли, наступает вторая фаза, оказывающая большое влияние на состояние атмосферы. Многие природные явления, среди которых наиболее известны полярные сияния, свидетельствуют о том, что значительное количество заряженных частиц достигает Земли (см. также ПОЛЯРНОЕ СИЯНИЕ). Тем не менее процессы отрыва этих частиц от Солнца, их траектории в межпланетном пространстве и механизмы взаимодействия с магнитным полем Земли и магнитосферой пока еще недостаточно изучены. Проблема усложнилась после открытия в 1958 Джеймсом Ван Алленом удерживаемых геомагнитным полем оболочек, состоящих из заряженных частиц. Эти частицы перемещаются из одного полушария в другое, вращаясь по спиралям вокруг силовых линий магнитного поля. Вблизи Земли на высоте, зависящей от формы силовых линий и от энергии частиц, располагаются "точки отражения", в которых частицы меняют направление движения на противоположное (рис. 3). Поскольку напряженность магнитного поля уменьшается с удалением от Земли, орбиты, по которым движутся эти частицы, несколько искажаются: электроны отклоняются к востоку, а протоны - к западу. Поэтому они распределяются в виде поясов вокруг земного шара.



Некоторые последствия нагрева атмосферы Солнцем. Солнечная энергия оказывает влияние на всю атмосферу. Выше уже упоминались пояса, образованные заряженными частицами в магнитном поле Земли и вращающиеся вокруг нее. Эти пояса ближе всего подходят к земной поверхности в приполярных районах (см. рис. 3), где наблюдаются полярные сияния. На рисунке 1 показано, что в районах проявления полярных сияний в Канаде температуры термосферы значительно выше, чем на Юго-Западе США. Вероятно, захваченные частицы отдают часть своей энергии в атмосферу, особенно при столкновении с молекулами газа вблизи точек отражения, и сходят со своих прежних орбит. Так происходит нагрев высоких слоев атмосферы в зоне полярных сияний. Еще одно важное открытие было сделано при изучении орбит искусственных спутников. Луиджи Яккиа, астроном из Смитсоновской астрофизической обсерватории, полагает, что небольшие отклонения этих орбит обусловлены изменениями плотности атмосферы при ее нагреве Солнцем. Он предположил существование на высоте более 200 км в ионосфере максимума концентрации электронов, который не соответствует солнечному полудню, а под воздействием силы трения запаздывает по отношению к нему примерно на два часа. В это время значения плотности атмосферы, обычные для высоты 600 км, наблюдаются на уровне ок. 950 км. Кроме того, максимум концентрации электронов испытывает нерегулярные колебания вследствие кратковременных вспышек ультрафиолетового и рентгеновского излучения Солнца. Л.Яккиа обнаружил также кратковременные колебания плотности воздуха, соответствующие вспышкам на Солнце и возмущениям магнитного поля. Эти явления объясняются вторжением частиц солнечного происхождения в атмосферу Земли и нагревом тех ее слоев, где проходят орбиты спутников.
АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО
В приземном слое атмосферы небольшая часть молекул подвергается ионизации под воздействием космических лучей, излучения радиоактивных горных пород и продуктов распада радия (в основном радона) в самом воздухе. В процессе ионизации атом теряет электрон и приобретает положительный заряд. Свободный электрон быстро соединяется с другим атомом, образуя отрицательно заряженный ион. Такие парные положительные и отрицательные ионы имеют молекулярные размеры. Молекулы в атмосфере стремятся группироваться вокруг этих ионов. Несколько молекул, объединившихся с ионом, образуют комплекс, называемый обычно "легким ионом". В атмосфере присутствуют также комплексы молекул, известные в метеорологии под названием ядер конденсации, вокруг которых при насыщении воздуха влагой начинается процесс конденсации. Эти ядра представляют собой частички соли и пыли, а также загрязняющих веществ, поступающих в воздух от промышленных и других источников. Легкие ионы часто присоединяются к таким ядрам, образуя "тяжелые ионы". Под воздействием электрического поля легкие и тяжелые ионы перемещаются из одних областей атмосферы в другие, перенося электрические заряды. Хотя обычно атмосфера не считается электропроводной средой, она все же обладает небольшой проводимостью. Поэтому оставленное на воздухе заряженное тело медленно утрачивает свой заряд. Проводимость атмосферы возрастает с высотой из-за увеличения интенсивности космического излучения, уменьшения потерь ионов в условиях более низкого давления (и, следовательно, при большем среднем свободном пробеге), а также из-за меньшего количества тяжелых ядер. Проводимость атмосферы достигает максимальной величины на высоте ок. 50 км, т.н. "уровне компенсации". Известно, что между поверхностью Земли и "уровнем компенсации" постоянно существует разность потенциалов в несколько сотен киловольт, т.е. постоянное электрическое поле. Выяснилось, что разность потенциалов между некоторой точкой, находящейся в воздухе на высоте нескольких метров, и поверхностью Земли очень велика - более 100 В. Атмосфера имеет положительный заряд, а земная поверхность заряжена отрицательно. Поскольку электрическое поле - область, в каждой точке которой имеется некоторое значение потенциала, можно говорить о градиенте потенциала. В ясную погоду в пределах нижних нескольких метров напряженность электрического поля атмосферы почти постоянна. Из-за различий электропроводности воздуха в приземном слое градиент потенциала подвержен суточным колебаниям, ход которых существенно меняется от места к месту. При отсутствии локальных источников загрязнения воздуха - над океанами, высоко в горах или в полярных районах - суточный ход градиента потенциала в ясную погоду одинаков. Величина градиента зависит от всемирного, или среднего гринвичского, времени (UТ) и достигает максимума в 19 ч. Э. Эплтон предположил, что этот максимум электропроводности, вероятно, совпадает с наибольшей грозовой активностью в планетарном масштабе. Разряды молний во время гроз переносят отрицательный заряд к поверхности Земли, поскольку основания наиболее активных кучево-дождевых грозовых облаков обладают значительным отрицательным зарядом. Верхние части грозовых облаков обладают положительным зарядом, который, по расчетам Хольцера и Саксона, во время гроз стекает с их вершин. Без постоянного пополнения заряд земной поверхности был бы нейтрализован за счет проводимости атмосферы. Предположение о том, что разность потенциалов между земной поверхностью и "уровнем компенсации" поддерживается благодаря грозам, подкрепляется статистическими данными. Например, максимальное число гроз отмечается в долине р. Амазонки. Чаще всего грозы бывают там в конце дня, т.е. ок. 19 ч среднего гринвичского времени, когда градиент потенциала максимален в любой точке земного шара. Более того, сезонные вариации формы кривых суточного хода градиента потенциала тоже находятся в полном соответствии с данными о глобальном распределении гроз. Некоторые исследователи утверждают, что источник электрического поля Земли, возможно, имеет внешнее происхождение, поскольку электрические поля, как полагают, существуют в ионосфере и магнитосфере. Этим обстоятельством, вероятно, объясняется возникновение очень узких удлиненных форм полярных сияний, похожих на кулисы и арки
(см. также ПОЛЯРНОЕ СИЯНИЕ). Благодаря наличию градиента потенциала и проводимости атмосферы между "уровнем компенсации" и поверхностью Земли начинают двигаться заряженные частицы: положительно заряженные ионы - по направлению к земной поверхности, а отрицательно заряженные - вверх от нее. Сила этого тока составляет ок. 1800 А. Хотя эта величина кажется большой, необходимо помнить, что она распределяется по всей поверхности Земли. Сила тока в столбе воздуха с площадью основания 1 м2 составляет лишь 4*10 -12 А. С другой стороны, сила тока при разряде молнии может достигать нескольких ампер, хотя, конечно, такой разряд имеет малую продолжительность - от долей секунды до целой секунды или немного больше при повторных разрядах. Молния представляет большой интерес не только как своеобразное явление природы. Она дает возможность наблюдать электрический разряд в газовой среде при напряжении в несколько сотен миллионов вольт и расстоянии между электродами в несколько километров. В 1750 Б. Франклин предложил Лондонскому королевскому обществу поставить опыт с железной штангой, укрепленной на изолирующем основании и установленной на высокой башне. Он ожидал, что при приближении грозового облака к башне на верхнем конце первоначально нейтральной штанги сосредоточится заряд противоположного знака, а на нижнем - заряд того же знака, что у основания облака. Если напряженность электрического поля при разряде молнии возрастет достаточно сильно, заряд с верхнего конца штанги будет частично стекать в воздух, а штанга приобретет заряд того же знака, что и основание облака. Предложенный Франклином эксперимент не был осуществлен в Англии, однако его поставил в 1752 в Марли под Парижем французский физик Жан д"Аламбер. Он использовал вставленную в стеклянную бутылку (служившую изолятором) железную штангу длиной 12 м, но не помещал ее на башню. 10 мая его ассистент сообщил, что, когда грозовое облако находилось над штангой, при поднесении к ней заземленной проволоки возникали искры. Сам Франклин, не зная об успешном опыте, реализованном во Франции, в июне того же года провел свой знаменитый эксперимент с воздушным змеем и наблюдал электрические искры на конце привязанной к нему проволоки. На следующий год, изучая заряды, собранные со штанги, Франклин установил, что основания грозовых облаков обычно заряжены отрицательно. Более детальные исследования молний стали возможны в конце 19 в. благодаря совершенствованию методов фотографии, особенно после изобретения аппарата с вращающимися линзами, что позволило фиксировать быстро развивающиеся процессы. Такой фотоаппарат широко использовался при изучении искровых разрядов. Было установлено, что существует несколько типов молний, причем наиболее распространены линейные, плоские (внутриоблачные) и шаровые (воздушные разряды). Линейные молнии представляют собой искровой разряд между облаком и земной поверхностью, следующий по каналу с направленными вниз ответвлениями. Плоские молнии возникают внутри грозового облака и выглядят как вспышки рассеянного света. Воздушные разряды шаровых молний, начинающиеся от грозового облака, часто направлены горизонтально и не достигают земной поверхности.



Разряд молнии обычно состоит из трех или более повторных разрядов - импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии). В целом вспышка длится около секунды или меньше. Типичный процесс развития молнии можно описать следующим образом. Сначала сверху к земной поверхности устремляется слабо светящийся разряд-лидер. Когда он ее достигнет, ярко светящийся обратный, или главный, разряд проходит от земли вверх по каналу, проложенному лидером. Разряд-лидер, как правило, движется зигзагообразно. Скорость его распространения колеблется от ста до нескольких сотен километров в секунду. На своем пути он ионизирует молекулы воздуха, создавая канал с повышенной проводимостью, по которому обратный разряд движется вверх со скоростью приблизительно в сто раз большей, чем у разряда-лидера. Размер канала определить трудно, однако диаметр разряда-лидера оценивается в 1-10 м, а обратного разряда - в несколько сантиметров. Разряды молнии создают радиопомехи, испуская радиоволны в широком диапазоне - от 30 кГц до сверхнизких частот. Наибольшее излучение радиоволн находится, вероятно, в диапазоне от 5 до 10 кГц. Такие низкочастотные радиопомехи "сосредоточены" в пространстве между нижней границей ионосферы и земной поверхностью и способны распространяться на расстояния в тысячи километров от источника.
ИЗМЕНЕНИЯ В АТМОСФЕРЕ
Воздействие метеоров и метеоритов. Хотя иногда метеорные дожди производят глубокое впечатление своими световыми эффектами, отдельные метеоры видны довольно редко. Гораздо многочисленнее невидимые метеоры, слишком малые, чтобы быть различимыми в момент их поглощения атмосферой. Некоторые из мельчайших метеоров, вероятно, совершенно не нагреваются, а лишь захватываются атмосферой. Эти мелкие частицы с размерами от нескольких миллиметров до десятитысячных долей миллиметра называются микрометеоритами. Количество ежесуточно поступающего в атмосферу метеорного вещества составляет от 100 до 10 000 т, причем большая часть этого вещества приходится на микрометеориты. Поскольку метеорное вещество частично сгорает в атмосфере, ее газовый состав пополняется следами различных химических элементов. Например, каменные метеоры привносят в атмосферу литий. Сгорание металлических метеоров приводит к образованию мельчайших сферических железных, железоникелевых и других капелек, которые проходят сквозь атмосферу и осаждаются на земной поверхности. Их можно обнаружить в Гренландии и Антарктиде, где почти без изменений годами сохраняются ледниковые покровы. Океанологи находят их в донных океанических отложениях. Большая часть метеорных частиц, поступивших в атмосферу, осаждается примерно в течение 30 суток. Некоторые ученые считают, что эта космическая пыль играет важную роль в формировании таких атмосферных явлений, как дождь, поскольку служит ядрами конденсации водяного пара. Поэтому предполагают, что выпадение осадков статистически связано с крупными метеорными дождями. Однако некоторые специалисты полагают, что, поскольку общее поступление метеорного вещества во много десятков раз превышает его поступление даже с крупнейшим метеорным дождем, изменением в общем количестве этого вещества, происходящим в результате одного такого дождя, можно пренебречь. Однако несомненно, что наиболее крупные микрометеориты и, конечно, видимые метеориты оставляют длинные следы ионизации в высоких слоях атмосферы, главным образом в ионосфере. Такие следы можно использовать для дальней радиосвязи, так как они отражают высокочастотные радиоволны. Энергия поступающих в атмосферу метеоров расходуется главным образом, а может быть и полностью, на ее нагревание. Это одна из второстепенных составляющих теплового баланса атмосферы.
Углекислый газ промышленного происхождения. В каменноугольном периоде на Земле была широко распространена древесная растительность. Большая часть диоксида углерода, поглощенного в то время растениями, накопилась в залежах угля и в нефтеносных отложениях. Огромные запасы этих полезных ископаемых человек научился использовать в качестве источника энергии и сейчас быстрыми темпами возвращает углекислый газ в круговорот веществ. В ископаемом состоянии находится, вероятно, ок. 4*10 13 т углерода. За последнее столетие человечество сожгло столько ископаемого топлива, что примерно 4*10 11 т углерода вновь поступило в атмосферу. В настоящее время в атмосфере присутствует ок. 2*10 12 т углерода, а в ближайшие сто лет за счет сжигания ископаемого топлива эта цифра, возможно, удвоится. Однако не весь углерод останется в атмосфере: часть его растворится в водах океана, часть будет поглощена растениями, а часть - связана в процессе выветривания горных пород. Пока нельзя предсказать, сколько углекислого газа будет содержаться в атмосфере или какое именно воздействие он окажет на климат земного шара. Тем не менее считается, что любое увеличение его содержания вызовет потепление, хотя вовсе не обязательно, что любое потепление существенно повлияет на климат. Концентрация углекислого газа в атмосфере, по результатам измерений, заметно увеличивается, хотя и небыстрыми темпами. Климатические данные по Шпицбергену и станции Литтл-Америка на шельфовом леднике Росса в Антарктиде свидетельствуют о повышении средних годовых температур примерно за 50-летний период соответственно на 5° и 2,5° С.
Воздействие космического излучения. При взаимодействии обладающих высокой энергией космических лучей с отдельными составляющими атмосферы образуются радиоактивные изотопы. Среди них выделяется изотоп углерода 14С, накапливающийся в растительных и животных тканях. Путем измерения радиоактивности органических веществ, которые давно не обмениваются углеродом с окружающей средой, можно определить их возраст. Радиоуглеродный метод зарекомендовал себя как наиболее надежный способ датирования ископаемых организмов и предметов материальной культуры, возраст которых не превышает 50 тыс. лет. Для датирования материалов, имеющих возраст в сотни тысяч лет, можно будет использовать другие радиоактивные изотопы с большими периодами полураспада, если будет решена принципиальная задача измерения крайне низких уровней радиоактивности
(см. также РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ).
ПРОИСХОЖДЕНИЕ АТМОСФЕРЫ ЗЕМЛИ
Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее выявлены некоторые вероятные изменения ее состава. Становление атмосферы началось сразу после формирования Земли. Имеются довольно веские основания полагать, что в процессе эволюции Праземли и обретения ею близких к современным размеров и массы она практически полностью утратила свою первоначальную атмосферу. Считается, что на раннем этапе Земля находилась в расплавленном состоянии и ок. 4,5 млрд. лет назад оформилась в твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени происходила и медленная эволюция атмосферы. Некоторые геологические процессы, как, например, излияния лавы при извержениях вулканов, сопровождались выбросом газов из недр Земли. В их состав, вероятно, входили азот, аммиак, метан, водяной пар, оксид и диоксид углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода с образованием углекислого газа. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным ее компонентом, хотя некоторая его часть связывалась в ходе химических реакций. Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, вероятно присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. Следовательно, жизнь могла зародиться в атмосфере, принципиально отличной от современной. С появлением примитивных растений начался процесс фотосинтеза (см. также ФОТОСИНТЕЗ), сопровождавшийся выделением свободного кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. По оценкам, наличие всего 0,00004 современного объема кислорода могло привести к формированию слоя с вдвое меньшей, чем сейчас, концентрацией озона, что тем не менее обеспечивало весьма существенную защиту от ультрафиолетовых лучей. Вероятно также, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, некоторые ученые полагают, что колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды. Присутствующий в современной атмосфере гелий, вероятно, большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают альфа-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, на каждую альфа-частицу приходится два электрона. В итоге она соединяется с ними, образуя нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности объем этого газа в атмосфере неизменен. На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона - в десять миллионов раз, а ксенона - в миллион раз. Отсюда следует, что концентрация этих инертных газов, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия.
ОПТИЧЕСКИЕ ЯВЛЕНИЯ
Многообразие оптических явлений в атмосфере обусловлено различными причинами. К наиболее распространенным феноменам относятся молния (см. выше) и весьма живописные северное и южное полярные сияния (см. также ПОЛЯРНОЕ СИЯНИЕ). Кроме того, особенно интересны радуга, гал, паргелий (ложное солнце) и дуги, корона, нимбы и призраки Броккена, миражи, огни святого Эльма, светящиеся облака, зеленые и сумеречные лучи. Радуга - самое красивое атмосферное явление. Обычно это огромная арка, состоящая из разноцветных полос, наблюдаемая, когда Солнце освещает лишь часть небосвода, а воздух насыщен капельками воды, например во время дождя. Разноцветные дуги располагаются в последовательности спектра (красная, оранжевая, желтая, зеленая, голубая, синяя, фиолетовая), однако цвета почти никогда не бывают чистыми, поскольку полосы взаимно перекрываются. Как правило, физические характеристики радуг существенно различаются, поэтому и по внешнему виду они весьма разнообразны. Их общей чертой является то, что центр дуги всегда располагается на прямой, проведенной от Солнца к наблюдателю. Главная радуга представляет собой дугу, состоящую из наиболее ярких цветов - красного на внешней стороне и фиолетового - на внутренней. Иногда видна только одна дуга, но часто с внешней стороны основной радуги появляется побочная. Она имеет не столь яркие цвета, как первая, а красная и фиолетовая полосы в ней меняются местами: красная располагается с внутренней стороны. Образование главной радуги объясняется двойным преломлением (см. также ОПТИКА) и однократным внутренним отражением лучей солнечного света (см. рис. 5). Проникая внутрь капли воды (А), луч света преломляется и разлагается, как при прохождении сквозь призму. Затем он достигает противоположной поверхности капли (В), отражается от нее и выходит из капли наружу (С). При этом луч света прежде, чем достичь наблюдателя, преломляется вторично. Исходный белый луч разлагается на лучи разных цветов с углом расхождения 2°. При образовании побочной радуги происходит двойное преломление и двойное отражение солнечных лучей (см. рис. 6). В этом случае свет преломляется, проникая внутрь капли через ее нижнюю часть (А), и отражается от внутренней поверхности капли сначала в точке В, затем в точке С. В точке D свет преломляется, выходя из капли в сторону наблюдателя.





На восходе и закате Солнца наблюдатель видит радугу в виде дуги, равной половине окружности, так как ось радуги параллельна горизонту. Если Солнце располагается выше над горизонтом, дуга радуги меньше половины окружности. Когда Солнце поднимается выше 42° над горизонтом, радуга исчезает. Везде, кроме высоких широт, радуга не может появиться в полдень, когда Солнце стоит слишком высоко. Интересно оценить расстояние до радуги. Хотя кажется, что разноцветная дуга расположена в одной плоскости, это - иллюзия. На самом деле радуга имеет огромную глубину, и ее можно представить в виде поверхности пустотелого конуса, в вершине которого находится наблюдатель. Ось конуса соединяет Солнце, наблюдателя и центр радуги. Наблюдатель смотрит как бы вдоль поверхности этого конуса. Два человека никогда не могут увидеть совершенно одинаковую радугу. Конечно, можно наблюдать в целом один и тот же эффект, но две радуги занимают различное положение и образованы разными капельками воды. Когда дождь или водяная пыль образуют радугу, полный оптический эффект достигается за счет суммарного воздействия всех капелек воды, пересекающих поверхность конуса радуги с наблюдателем в вершине. Роль каждой капли мимолетна. Поверхность конуса радуги состоит из нескольких слоев. Быстро пересекая их и проходя при этом через серию критических точек, каждая капля мгновенно разлагает солнечный луч на весь спектр в строго определенной последовательности - от красного до фиолетового цвета. Множество капель таким же образом пересекает поверхность конуса, так что радуга представляется наблюдателю непрерывной как вдоль, так и поперек ее дуги. Гало - белые или радужные световые дуги и окружности вокруг диска Солнца или Луны. Они возникают вследствие преломления или отражения света находящимися в атмосфере кристаллами льда или снега. Кристаллы, формирующие гало, располагаются на поверхности воображаемого конуса с осью, направленной от наблюдателя (из вершины конуса) к Солнцу. При некоторых условиях атмосфера бывает насыщена мелкими кристаллами, многие грани которых образуют прямой угол с плоскостью, проходящей через Солнце, наблюдателя и эти кристаллы. Такие грани отражают поступающие лучи света с отклонением на 22°, образуя красноватое с внутренней стороны гало, но оно может состоять и из всех цветов спектра. Реже встречается гало с угловым радиусом 46°, располагающееся концентрически вокруг 22-градусного гало. Его внутренняя сторона тоже имеет красноватый оттенок. Причиной этого также является преломление света, происходящее в этом случае на образующих прямые углы гранях кристаллов. Ширина кольца такого гало превышает 2,5°. Как 46-градусные, так и 22-градусные гало, как правило, имеют наибольшую яркость в верхней и нижней частях кольца. Изредка встречающееся 90-градусное гало представляет собой слабо светящееся, почти бесцветное кольцо, имеющее общий центр с двумя другими гало. Если оно окрашено, то имеет красный цвет на внешней стороне кольца. Механизм возникновения такого типа гало до конца не выяснен (рис. 7).



Паргелии и дуги. Паргелический круг (или круг ложных солнц) - белое кольцо с центром в точке зенита, проходящее через Солнце параллельно горизонту. Причиной его образования служит отражение солнечного света от граней поверхностей кристаллов льда. Если кристаллы достаточно равномерно распределены в воздухе, становится видимым полный круг. Паргелии, или ложные солнца, - это ярко светящиеся пятна, напоминающие Солнце, которые образуются в точках пересечения паргелического круга с гало, имеющими угловые радиусы 22°, 46° и 90°. Наиболее часто образующийся и самый яркий паргелий формируется на пересечении с 22-градусным гало, обычно окрашенный почти во все цвета радуги. Ложные солнца на пересечениях с 46- и 90-градусными гало наблюдаются гораздо реже. Паргелии, возникающие на пересечениях с 90-градусными гало, называются парантелиями, или ложными противосолнцами. Иногда виден также антелий (противосолнце) - яркое пятно, расположенное на кольце паргелия точно напротив Солнца. Предполагается, что причиной возникновения этого явления служит двойное внутреннее отражение солнечного света. Отраженный луч проходит по тому же пути, что и падающий луч, но в обратном направлении. Околозенитная дуга, иногда неверно называемая верхней касательной дугой 46-градусного гало, - это дуга в 90° или меньше с центром в точке зенита, расположенная выше Солнца приблизительно на 46°. Она бывает видна редко и только в течение нескольких минут, имеет яркие цвета, причем красный цвет приурочен к внешней стороне дуги. Околозенитная дуга примечательна своей расцветкой, яркостью и четкими очертаниями. Еще один любопытный и очень редкий оптический эффект типа гало - дуги Ловица. Они возникают как продолжение паргелиев на пересечении с 22-градусным гало, проходят с внешней стороны гало и слегка вогнуты в сторону Солнца. Столбы беловатого света, как и разнообразные кресты, иногда видны на рассвете или на закате, особенно в полярных регионах, и могут сопутствовать как Солнцу, так и Луне. Временами наблюдаются лунные гало и другие эффекты, подобные описанным выше, причем наиболее обычное лунное гало (кольцо вокруг Луны) имеет угловой радиус 22°. Подобно ложным солнцам, могут возникать ложные луны. Короны, или венцы, - небольшие концентрические цветные кольца вокруг Солнца, Луны или других ярких объектов, которые наблюдаются время от времени, когда источник света находится за полупрозрачными облаками. Радиус короны меньше радиуса гало и составляет ок. 1-5°, ближайшим к Солнцу оказывается голубое или фиолетовое кольцо. Корона возникает при рассеивании света мелкими водяными капельками воды, образующими облако. Иногда корона выглядит как светящееся пятно (или ореол), окружающее Солнце (или Луну), которое завершается красноватым кольцом. В других случаях за пределами ореола видно не менее двух концентрических колец большего диаметра, очень слабо окрашенных. Это явление сопровождается радужными облаками. Иногда края очень высоко расположенных облаков окрашены в яркие цвета.
Глории (нимбы). В особых условиях возникают необычные атмосферные явления. Если Солнце находится за спиной наблюдателя, а его тень проецируется на близрасположенные облака или завесу тумана, при определенном состоянии атмосферы вокруг тени головы человека можно увидеть цветной светящийся круг - нимб. Обычно такой нимб образуется из-за отражения света капельками росы на травяном газоне. Глории также довольно часто можно обнаружить вокруг тени, которую отбрасывает самолет на нижележащие облака.
Призраки Броккена. В некоторых районах земного шара, когда тень находящегося на возвышенности наблюдателя при восходе или заходе Солнца сзади него падает на облака, расположенные на небольшом расстоянии, обнаруживается поразительный эффект: тень приобретает колоссальные размеры. Это происходит из-за отражения и преломления света мельчайшими капельками воды в тумане. Описанное явление носит название "призрак Броккена" по имени вершины в горах Гарц в Германии.
Миражи - оптический эффект, обусловленный преломлением света при прохождении через слои воздуха разной плотности и выражающийся в возникновении мнимого изображения. Удаленные объекты при этом могут оказаться поднятыми или опущенными относительно их действительного положения, а также могут быть искажены и приобрести неправильные, фантастические формы. Миражи часто наблюдаются в условиях жаркого климата, например над песчаными равнинами. Обычны нижние миражи, когда отдаленная, почти ровная поверхность пустыни приобретает вид открытой воды, особенно если смотреть с небольшого возвышения или просто находиться выше слоя нагретого воздуха. Подобная иллюзия обычно возникает на нагретой асфальтированной дороге, которая далеко впереди выглядит как водная поверхность. В действительности эта поверхность является отражением неба. Ниже уровня глаз в этой "воде" могут появиться объекты, обычно перевернутые. Над нагретой поверхностью суши формируется "воздушный слоеный пирог", причем ближайший к земле слой - самый нагретый и настолько разрежен, что световые волны, проходя через него, искажаются, так как скорость их распространения меняется в зависимости от плотности среды. Верхние миражи менее распространены и более живописны по сравнению с нижними. Удаленные объекты (часто находящиеся за морским горизонтом) вырисовываются на небе в перевернутом положении, а иногда выше появляется еще и прямое изображение того же объекта. Это явление типично для холодных регионов, особенно при значительной температурной инверсии, когда над более холодным слоем находится более теплый слой воздуха. Данный оптический эффект проявляется в результате сложных закономерностей распространения фронта световых волн в слоях воздуха с неоднородной плотностью. Время от времени возникают очень необычные миражи, особенно в полярных регионах. Когда миражи возникают на суше, деревья и другие компоненты ландшафта перевернуты. Во всех случаях в верхних миражах объекты видны более отчетливо, чем в нижних. Когда границей двух воздушных масс является вертикальная плоскость, порой наблюдаются боковые миражи.
Огни святого Эльма. Некоторые оптические явления в атмосфере (например, свечение и самое распространенное метеорологическое явление - молния) имеют электрическую природу. Гораздо реже встречаются огни святого Эльма - светящиеся бледно-голубые или фиолетовые кисти длиной от 30 см до 1 м и более, обычно на верхушках мачт или концах рей находящихся в море судов. Иногда кажется, что весь такелаж судна покрыт фосфором и светится. Огни святого Эльма порой возникают на горных вершинах, а также на шпилях и острых углах высоких зданий. Это явление представляет собой кистевые электрические разряды на концах электропроводников, когда в атмосфере вокруг них сильно повышается напряженность электрического поля. Блуждающие огоньки - слабое свечение голубоватого или зеленоватого цвета, которое иногда наблюдается на болотах, кладбищах и в склепах. Они часто выглядят как приподнятое примерно на 30 см над землей спокойно горящее, не дающее тепла, пламя свечи, на мгновение зависающее над объектом. Огонек кажется совершенно неуловимым и при приближении наблюдателя как бы перемещается в другое место. Причиной этого явления служит разложение органических остатков и самовозгорание болотного газа метана (СН4) или фосфина (РН3). Блуждающие огоньки имеют разную форму, иногда даже шаровидную. Зеленый луч - вспышка солнечного света изумрудно-зеленого цвета в тот момент, когда последний луч Солнца скрывается за горизонтом. Красная составляющая солнечного света исчезает первой, все прочие - по порядку вслед за ней, и последней остается изумрудно-зеленая. Это явление возникает, лишь когда над горизонтом остается только самый краешек солнечного диска, а иначе происходит смешение цветов. Сумеречные лучи - расходящиеся пучки солнечного света, которые становятся видимыми благодаря освещению ими пыли в высоких слоях атмосферы. Тени от облаков образуют темные полосы, а между ними распространяются лучи. Этот эффект наблюдается, когда Солнце находится низко над горизонтом перед рассветом или после заката.

Экологические аспекты безопасности

Экологическая безопасность сумма условий, при которых достигается научно-обоснованное ограничение или исключение вредного воздействия хозяйственной деятельности на жизнедеятельность населения и качество окружающей среды.

Экологическая безопасность достигается системой мероприятий (прогнозирование, планирование, подготовка к осуществлению комплекса профилактических мер), обеспечивающих минимальный уровень неблагоприятных воздействий природы и технологических процессов ее освоения на жизнедеятельность и здоровье людей (человека) при сохранении темпов экономического развития.

Качество окружающей среды складывается из качества отдельных компонентов природы (атмосферного воздуха, климата, природных вод, почвенного покрова и т.д.), хозяйственно-бытовых элементов (производство, жилище, коммунальное благоустройство) и социально-экономических условий (уровень доходов, образование).

На современном этапе исторического развития принято выделять две формы взаимодействия общества и природы:

экономическая – потребление природных ресурсов;

экологическая – охрана окружающей природной среды с целью сохранения человека и его естественной среды обитания.

Человек, потребляя ресурсы окружающей среды для удовлетворения своих материальных и духовных потребностей, изменяет природную среду, которая начинает воздействовать на самого человека. Негативная антропогенная деятельность проявляется в трех основных направлениях:

· загрязнение окружающей среды – процесс привнесения в среду или возникновение в ней новых, обычно не характерных для нее агентов, оказывающих на ее составляющие негативное воздействие.

Существует три вида загрязнений: физическое (солнечная радиация, электромагнитное излучение и т.д.), химическое (аэрозоли, тяжелые металлы и др.), биологическое (бактериологическое, микробиологическое). Каждый вид загрязнения имеет характерный и специфичный для него источник загрязнения. Источник загрязнения – природный или хозяйственный объект, являющийся началом поступления вещества-загрязнителя в окружающую среду. Различают природные и антропогенные источники загрязнения. Антропогенный поток поступления экотоксикантов в окружающую среду превалирует над естественным (50-80%) и лишь в некоторых случаях сопоставим с ним;

· истощение природных ресурсов ;

· разрушение окружающей природной среды .

Масштаб воздействия человека на природу стал в современных условиях планетарным, а по количественному эффекту деятельность человека превосходит многие естественные процессы, что приводит к тяжелым экологическим последствиям. Антропогенное влияние распространяется на все важнейшие составляющие биосферы: атмосферу, гидросферу, литосферу. Перейдем к их подробной характеристике.

I. Изменение состояния атмосферы.

Атмосфера газовая оболочка планеты, достигающая высоты 1000 км . За пределами данного расстояния атмосфера становится разреженной и постепенно переходит в космическое пространство. Атмосфера обеспечивает функцию дыхания всех живых организмов; определяет общий тепловой режим поверхности планеты; защищает от вредного космического и ультрафиолетового излучения Солнца. Циркуляция атмосферы влияет на местные климатические условия, а через них на режим рек, косвенно на растительный покров и на процессы рельефообразования.

Специалисты, изучающие атмосферу, выделяют в ней несколько зон, располагающихся на различных высотах от Земли в зависимости от их температуры (Рис.).

Тропосфера самый близкий слой к поверхности Земли, его высота 9-16 км. В этом слое происходят явления, которые мы именуем погодой.

Стратосфера – слой, достигающий высоты 45-50 км. Именно здесь сконцентрирована основная часть атмосферного озона (20-25 км), имеющего чрезвычайно важное биологическое значение – защита живых организмов от коротковолнового ультрафиолетового излучения.

Мезосфера – слой, расположенные на высотах 50-80 км от земной поверхности. Этот слой характеризуется быстрым понижением температуры, так на верхней его границе температура может достигать – 100 о С.

Термосфера начинается на высоте более 80 км, ее верхняя граница достигает 600-800 км. Это область полетов искусственных спутников Земли и межконтинентальных баллистических ракет. Для нижней границы термосферы характерно непрерывное повышение температуры, достигающей +250 о С. Важнейшей физической особенностью этого слоя является повышенная ионизация, т.е. наличие огромного количества электрически зараженных частиц, что позволяет наблюдать полярные сияния.

Экзосфера – внешний слой атмосферы. Отсюда атмосферные газы рассеиваются в космическое пространство. От космического пространства экзосфера отличается наличием большого количества свободных электронов, образующих верхние радиационные пояса Земли.

Хотя процессы, происходящие в земной атмосфере, необычайно сложны, ее химический состав сравнительно однороден:

· азот (N 2)– 78,1%

· кислород (O 2) – 20,95%

· аргон (Ar) – 0,9%

· углекислый газ (CO 2) – 0,03%

· водород (H 2) , гелий (He), неон (Ne) и другие газы – 1,8*10 -4 %.

Атмосфера обладает мощной способностью к самоочищению. Однако, превышая пределы данной способности, деятельность человека изменяет сложившееся в природе равновесие. Большинство экологически негативных последствий деятельности людей проявляется в загрязнении природного вещества.

1. Загрязнение атмосферы представляет собой изменение физико-химического состава воздуха, которое угрожает состоянию здоровья и жизни человека, а также естественной среде обитания.

В экологической литературе загрязняющие вещества получили название полютантов (экотоксикантов). Степень загрязнения атмосферного воздуха оценивается по двум основным группам экотоксикантов:

a) канцерогенные вещества – бенз(а)пирен, бензол, формальдегид (источником которых являются выхлопные газы автотранспорта), а также свинец, кадмий, никель, хром, мышьяк, сероуглерод, асбест, хлорсодержащие вещества (результат производственной деятельности). Канцерогенез – это способность металла проникать в клетку и реагировать с молекулой ДНК, приводя к хромосомным нарушениям клетки.

b) неканцерогенные вещества – оксиды азота, углерода, серы, озон, частицы пыли и сажи. К наиболее распространенным и повсеместно контролируемым полютантам, которых, по данным ЮНЕП, ежегодно выделяется до 25 млрд.т., относят:

·диоксид серы и частицы пыли – 200 млн т/год;

·оксиды азота (N x O y) – 60 млн т/год;

·оксиды углерода (CO и CO 2) – 8000 млн т/год;

· углеводороды (C x H y) – 80 млн т/год.

В последние десятилетия над промышленными центрами и крупными городами образуется скопление дыма и тумана называемое смог (от англ. smoke – дым и fog – туман). В его структуре можно выделить три яруса:

· нижний, залегающий между домами, образуется выделением выхлопных газов транспорта и поднятой пылью;

· средний, питаемый дымом отопительных систем, располагается над домами на высоте 20-30 метров;

· высокий, на расстоянии 50-100 метров от поверхности земли, состоит из выделений промышленных предприятий.

Смог затрудняет дыхание, способствует развитию стрессовых реакций. Особенно опасен для больных, пожилых людей и маленьких детей. (Лондонский смог 1951 г. Вызвал гибель от обострения легочных, сердечных заболеваний и прямого отравления за две недели 3,5 тыс. человек. Рурская область в 1962 г. За три дня погибли 156 человек).

Основными компонентами фотохимического смога являются оксиды азота (NO 2 , N 2 O) и углеводороды. Взаимодействие солнечных лучей с данными загрязнителями, сконцентрированными вблизи земной поверхности, приводит к образованию озона, пероксиацетил нитратов (ПАН) и других веществ, сходных по своим свойствам со слезоточивым газом. ПАН – химически активные органические вещества, которые раздражают слизистые оболочки, ткани дыхательных путей и легких человека; обесцвечивают зелень растений. Высокие концентрации озона снижают урожай зерновых, замедляют рост растений и вызывают гибель деревьев.

Скоплению примесей в достаточной концентрации для образования фотосмога способствует температурная инверсия особое состояние атмосферы, при котором на определенной высоте температура воздуха выше, чем температура воздушных масс в приземном слое. Данный слой теплого воздуха препятствует вертикальному перемешиванию и делает невозможным рассеивание токсичных выбросов. При современном градостроительстве подобные условия создаются в городах с кварталами многоэтажных домов. Инверсионный слой теплого воздуха может находиться на разных высотах, и чем ниже он располагается над большинством источников загрязнения, тем ситуация сложнее.

Уровни фотохимического загрязнения воздуха тесно связаны с режимом движения автотранспорта. В период высокой интенсивности движения утром и вечером отмечается пик выбросов в атмосферу оксидов азота и углеводородов, реакция которых друг с другом и обусловливает фотохимическое загрязнение воздуха.

Высокие концентрации и миграция примесей в атмосферном воздухе стимулируют их взаимодействие с образованием более токсичных соединений, что приводит к парниковому эффекту, появлению озоновых дыр, кислотным дождям и другим экологическим проблемам.

2. Парниковый эффект нагревание атмосферы в результате увеличения в ней количества оксида углерода (IV) и ряда других газов, препятствующих рассеиванию тепловой энергии Земли в космическое пространство. Углекислый газ атмосферы вместе с водяным паром и другими многоатомными минигазами (CO 2 , H 2 O, CH 4 , NO 2 , O 3) образует над поверхностью планеты слой, который позволяет солнечным лучам (оптический диапазон электромагнитных волн) достигать поверхности земли, но задерживает обратное тепловое (длинноволновое инфракрасное) излучение. Тепловая энергия накапливается в поверхностных слоях атмосферы тем интенсивнее, чем больше в них концентрация парниковых газов. Так, доля молекул водяного пара в формировании парникового эффекта составляет 62%; углекислого газа – 22%; метана – 2,5%; оксидов азота – 4%; озона – 7% и других газов 2,5%.

Увеличение содержания углекислого газа в атмосфере обусловлено длительным периодом систематического роста сжигания ископаемых видов топлива. Добыча газа, нефти и угля, гниение органических остатков и рост численности крупного рогатого скота являются источником поступления в атмосферу метана. Масштабы применения в сельском хозяйстве азотных удобрений и углеродосодержащих топлив в ТЭС характеризуют количество выбрасываемых в атмосферу оксидов азота. Присутствие в атмосфере водяного пара обусловлено интенсивностью испарения воды с поверхности океанов вследствие потепления климата.

Усилению парникового эффекта также способствуют, используемые в качестве растворителей, охлаждающих средств в холодильных установках и различных бытовых баллончиках, хлорфторуглеводороды (фреоны). Их влияние на парниковый эффект в 1000 раз сильнее, чем влияние равного количества углекислого газа.

Следствием парникового эффекта является повышение температуры на поверхности Земли и потепление климата. В результате возникает опасность таяния полярных льдов, что может вызвать затопление низких прибрежных участков суши. Кроме того, увеличение температуры воздушной среды может привести к снижению продуктивности сельскохозяйственных земель – дезертификации (от англ. desert – пустыня). В этой связи население соответствующих регионов будет испытывать недостаток питания.

3. «Озоновые дыры» области с уменьшенным содержанием на 40-50% озона в атмосфере .

Озон представляет собой соединение трех атомов кислорода (О 3), образующееся в верхних слоях стратосферы и нижних слоях мезосферы из кислорода под влиянием ультрафиолетовых (УФ) лучей солнечного света. Результатом данного взаимодействия является поглощение озоновым экраном около 99% УФ-излучения солнечного спектра, обладающего высокой энергией и губительного для всего живого. Количественной оценкой состояния озона в атмосфере является толщина озонового слоя, которая в зависимости от сезона, широты и долготы колеблется от 2,5 до 5 относительных миллиметров.

Многочисленные данные свидетельствуют о том, что озоновый слой начинает уменьшаться. Основной процесс деструкции озона обусловлен влиянием и увеличением выбросов оксидов азота, источником которых являются отработанные газы суперлайнеров с высоким потолком полета, различные ракетные системы, извержения вулканов и другие природные явления. Серьезную опасность для озонового слоя представляет поступление в атмосферу хлорфторуглеродов (ХФУ). Наиболее сильное разрушение озона связано с производством фреонов (CH 3 CL, CCL 2 F 2 и CCL 3 F), получивших широкое распространение в качестве наполнителей аэрозольных упаковок, огнетушителей, хладагентов в холодильниках и кондиционерах, при производстве пенопласта. Фреоны, попавшие в атмосферу, характеризуются большой устойчивостью и сохраняются в ней 60-100 лет.

Являясь химически инертными, фреоны безвредны для человека. Однако в стратосфере под действием коротковолнового ультрафиолетового излучения Солнца их молекулы разлагаются с выделением хлора.

Молекула хлора действует как катализатор, оставаясь неизменной в десятках тысяч актов разрушения молекул озона. Один атом хлора способен уничтожить 100 000 молекул озона.

Уменьшение содержания озона в атмосфере на 1% приводит к увеличению на 1,5% интенсивности падающего на поверхность нашей планеты жесткого УФ-излучения. Даже небольшое уменьшение озонового слоя способно увеличить заболеваемость раком кожи, оказать неблагоприятное воздействие на растения и животных, вызвать непредсказуемые изменения климата земного шара.

Проблема влияния фреонов на стратосферный озон приобрела международное значение, особенно в связи с образованием «озоновых дыр». Принята международная программа сокращения производств, использующих фреоны. Разработан и налажен промышленный выпуск так называемых альтернативных хладонов с низкой величиной коэффициента относительной озоноактивности.

4. Кислотные дожди осадки (дождь, снег, туман), химический состав которых характеризуется низким значением рН фактора . Для того, чтобы разобраться в данном вопросе вспомним, что молекулы воды обычно диссоциируют на ионы водорода (Н +) и гидроксил-ионы (ОН -). Раствор с одинаковыми концентрациями водородных и гидроксильных ионов называется нейтральным. Количественно величина кислотности раствора определяется как логарифм концентрации ионов водорода, взятый с обратным знаком. Эта величина называется рН -фактор. Значение рН=7 характеризует нейтральную воду – не кислую и не щелочную. Уменьшение величины рН на 1 означает увеличение кислотных свойств раствора в 10 раз. Чем меньше значение рН, тем более кислым оказывается раствор.

Кислотный дождь представляет собой результат присутствия в атмосфере оксидов серы и оксидов азота. Основными источниками поступления этих соединений в воздух являются процессы сжигания ископаемых видов топлива, содержащих серу; выплавка металлов; работа автотранспорта. Под действием УФ-излучения оксид серы (IV) превращается в оксид серы (VI), который вступая в реакцию с атмосферным водяным паром образует серную кислоту, очень гигроскопичную, способную образовывать токсичный туман. Наряду с оксидами серы, с порами воды смешиваются оксиды азота с образованием азотной кислоты. Эти две кислоты, а также соли этих кислот и обусловливают выпадение кислотных дождей. Чем выше содержание этих кислот в воздухе, тем чаще выпадают кислотные дожди.

Кислотные осадки присутствуют в радиусе 10-20 км вокруг индустриальных гигантов. К наиболее неблагоприятным районам России по кислотным осадкам относятся: Кольский полуостров, восточный склон Уральского хребта и район Таймыра. Кислотные аэрозольные частицы имеют небольшую скорость осаждения и могут переноситься в отдаленные районы на 100-1000 км от источников загрязнений.

Кислотные дожди ведут к разрушению зданий и сооружений, особенно выполненных из песчаников и известняка. Существенно повышается коррозионная агрессивность атмосферы, что вызывает коррозию металлических предметов и конструкций.

Особую опасность представляют не сами осадки, а вызываемые ими вторичные процессы. Под воздействием кислотных дождей изменяются биохимические свойства почвы, состояние пресных вод и лесов. В результате изменения рН почвы и воды повышается растворимость в них тяжелых металлов. Компоненты кислотных дождей после взаимодействия с тяжелыми металлами переводят их в легкоусваиваемую растениями форму.

Далее по пищевой цепи тяжелые металлы попадают в организмы рыб, животных и человека. До определенных пределов организмы защищены от прямого вредного воздействия кислотности, но коммуляция (накопление) тяжелых металлов представляет серьезную опасность. Кислотные дожди, снижая рН воды озер, ведут к гибели их обитателей. Попадая в организм человека, ионы тяжелых металлов легко связываются с белками, подавляя синтез макромолекул и в целом обмен веществ в клетках.

5. Уменьшение количества кислорода (О 2). Более трех миллиардов лет назад простые клетки, питающиеся химическими веществами, растворенными в воде, превратились в организмы, способные к фотосинтезу и начали продуцировать кислород Примерно два миллиарда лет назад содержание свободного кислорода в земной атмосфере начало возрастать. Из части атмосферного кислорода под влиянием солнечного света сформировался защитный озоновый слой, после чего начали развиваться наземные растения и животные. Содержание кислорода в атмосфере с течением времени претерпевало значительные изменения, поскольку менялись уровни его образования и использования. (Рис.)

В современных условиях главным продуцентов кислорода на земле являются (служат) зеленые водоросли поверхности океана (60%), тропические леса суши (30%) и наземные растения (10%). Возможное уменьшение количества кислорода на планете обусловлено несколькими причинами.

Во-первых , увеличением объема сжигаемого ископаемого топлива (промышленность, ТЭС, транспорт). По расчетам специалистов использование всех доступных человеку залежей угля, нефти и природного газа уменьшит содержание кислорода в воздухе не более чем на 0,15%.

Недостаток кислорода в воздушной среде городов способствует распространению среди населения легочных и сердечно-сосудистых заболеваний.

6. Акустическое загрязнение увеличение в воздушной среде уровня шумов, оказывающих раздражающее действие на живой организм.

На современном этапе развития НТП данное увеличение обусловлено внедрением новых технологических процессов, ростом мощностей оборудования, механизацией производственных процессов, появлением мощных средств наземного, воздушного и водного транспорта, что привело к практически постоянному воздействию на человека высоких (60-90 Дб) уровней шума. Это способствует появлению и развитию неврологических, сердечно-сосудистых, слуховых и других патологий.

В общем шумовом фоне города удельный вес транспорта составляет 60-80%. Внутриквартальные источники шума: спортивные игры, игры на детских площадках, разгрузочно-погрузочные работы у магазинов составляют 10-20%. Шумовой режим в квартирах складывается из шума проникающего извне и образующегося в результате эксплуатации инженерного и санитарно-технического оборудования: лифты, насосы, подкачка воды, мусоропроводы, вентиляция, запорные краны.

7. Снижение прозрачности атмосферы обусловлено увеличением содержания в ней взвешенных примесей (пыль). Пыль – это сложная смесь частиц. Твердые или жидкие частицы, находящиеся в воздухе во взвешенном состоянии, называются аэрозолями. Они воспринимаются в виде дыма (аэрозоль с твердыми частицами), тумана (аэрозоль с жидкими частицами), мглы или дымки.

Причины основных естественных выбросов пыли в атмосферу – это пыльные бури, эрозия почв, вулканическая деятельность, морские брызги. Источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, обогатительные фабрики, металлургические и цементные заводы, промышленные отвалы, взрывные работы, строительство. Высокие концентрации аэрозолей на протяжении многих лет регистрируются в атмосферном воздухе 50 городов России. Средняя концентрация взвесей наиболее загрязненных городов достигает 250-300 мкг/ м 3 , что в два раза выше среднесуточной предельно допустимой концентрации (ПДК), равной 150 мкг/м 3 . В 2000 году на территории г. Тамбова наблюдалось превышение максимальной разовой приземной концентрации по пыли в два раза, т.е. она составила 2 ПДК.

Промышленная пыль индустриальных городов имеет в своем составе оксиды металлов, многие из которых токсичны: оксиды марганца, свинца, молибдена, ванадия, сурьмы, теллура. Их влияние на живой организм зависит от величины пылевых частиц, их характера и химического состава (рис.).

Взвешенные частицы не только затрудняют дыхание, вызывают аллергии и отравления, но и приводят к климатическим изменениям, поскольку отражают солнечное излучение и затрудняют отвод тепла от Земли. Пыль ускоряет разрушение металлоконструкций, зданий и сооружений. Снижение прозрачности атмосферы способствует созданию помех авиации и судоходству, что нередко является причиной крупных транспортных аварий.


Похожая информация.


Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет 5,1352 ±0,0003·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 гг - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана , за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4) и сульфат аммония ((NH 4) 2 SO 4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2) 4)).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

См. также

  • Jacchia (модель атмосферы)

Примечания

Ссылки

Литература

  1. В. В. Парин, Ф. П. Космолинский, Б. А. Душков «Космическая биология и медицина» (издание 2-е, переработанное и дополненное), М.: «Просвещение», 1975, 223 стр.
  2. Н. В. Гусакова «Химия окружающей среды», Ростов-на-Дону: Феникс, 2004, 192 с ISBN 5-222-05386-5
  3. Соколов В. А. Геохимия природных газов, М., 1971;
  4. МакИвен М., Филлипс Л. Химия атмосферы, М., 1978;
  5. Уорк K., Уорнер С. Загрязнение воздуха. Источники и контроль, пер. с англ., М.. 1980;
  6. Мониторинг фонового загрязнения природных сред. в. 1, Л., 1982.

Wikimedia Foundation . 2010 .

Смотреть что такое "Атмосфера Земли" в других словарях:

    Атмосфера Земли - Атмосфера Земли. Вертикальное распределение температуры и плотности. АТМОСФЕРА ЗЕМЛИ, воздушная среда вокруг Земли, вращающаяся вместе с нею; масса около 5,15´1015 т. Состав воздуха (по объему) у поверхности Земли: 78,1% азота, 21% кислорода,… … Иллюстрированный энциклопедический словарь

Атмосфера - это то, что обеспечивает возможность жизни на Земле. Самые первые сведения и факты об атмосфере мы получаем ещё в начальной школе. В старших классах мы уже подробнее знакомимся с этим понятием на уроках географии.

Понятие земной атмосферы

Атмосфера имеется не только у Земли, но и у других небесных тел. Так называют газовую оболочку, окружающую планеты. Состав этого газового слоя разных планет значительно отличается. Давайте рассмотрим основные сведения и факты об иначе называемой воздухом.

Самой важной её составляющей частью является кислород. Некоторые ошибочно думают, что земная атмосфера состоит полностью из кислорода, но на самом деле воздух - это смесь газов. В его составе 78% азота и 21% кислорода. Остальной один процент включает в себя озон, аргон, углекислый газ, водяные пары. Пусть процентное соотношение этих газов мало, но они выполняют важную функцию - поглощают значительную часть солнечной лучистой энергии, тем самым не дают светилу превратить всё живое на нашей планете в пепел. Свойства атмосферы изменяются в зависимости от высоты. Например, на высоте 65 км азот составляет 86%, а кислород - 19%.

Состав атмосферы Земли

  • Углекислый газ необходим для питания растений. В атмосфере он появляется в результате процесса дыхания живых организмов, гниения, горения. Отсутствие его в составе атмосферы сделало бы невозможным существование любых растений.
  • Кислород - жизненно важный для человека компонент атмосферы. Его наличие является условием для существования всех живых организмов. Он составляет около 20% от общего объёма атмосферных газов.
  • Озон - это естественный поглотитель солнечного ультрафиолетового излучения, которое пагубно влияет на живые организмы. Большая его часть формирует отдельный слой атмосферы - озоновый экран. В последнее время деятельность человека приводит к тому, что начинает постепенно разрушаться, но так как он имеет большую важность, то ведётся активная работа по его сохранению и восстановлению.
  • Водяной пар определяет влажность воздуха. Его содержание может быть разным в зависимости от различных факторов: температуры воздуха, территориального расположения, сезона. При низкой температуре водяного пара в воздухе совсем мало, может быть меньше одного процента, а при высокой его количество достигает 4%.
  • Кроме всего вышеперечисленного, в составе земной атмосферы всегда присутствует определённый процент твёрдых и жидких примесей . Это сажа, пепел, морская соль, пыль, капли воды, микроорганизмы. Попадать в воздух они могут как естественным, так и антропогенным путём.

Слои атмосферы

И температура, и плотность, и качественный состав воздуха неодинаковый на разной высоте. Из-за этого принято выделять разные слои атмосферы. Каждый из них имеет свою характеристику. Давайте узнаем, какие слои атмосферы различают:

  • Тропосфера - этот слой атмосферы находится ближе всего к поверхности Земли. Высота его - 8-10 км над полюсами и 16-18 км - в тропиках. Здесь находится 90% всего водяного пара, который имеется в атмосфере, поэтому происходит активное образование облаков. Также в этом слое наблюдаются такие процессы, как движение воздуха (ветра), турбулентность, конвекция. Температура колеблется от +45 градусов в полдень в тёплое время года в тропиках до -65 градусов на полюсах.
  • Стратосфера - второй по отдалённости от слой атмосферы. Находится на высоте от 11 до 50 км. В нижнем слое стратосферы температура приблизительно -55, в сторону удаления от Земли она повышается до +1˚С. Эта область называется инверсией и является границей стратосферы и мезосферы.
  • Мезосфера располагается на высоте от 50 до 90 км. Температура на её нижней границе - около 0, на верхней достигает -80...-90 ˚С. Метеориты, попадающие в атмосферу Земли, полностью сгорают в мезосфере, из-за этого здесь происходят свечения воздуха.
  • Термосфера имеет толщину приблизительно 700 км. В этом слое атмосферы возникают северные сияния. Появляются они за счёт под действием космического излучения и радиации, исходящей от Солнца.
  • Экзосфера - это зона рассеивания воздуха. Здесь концентрация газов небольшая и происходит их постепенный уход в межпланетное пространство.

Границей между земной атмосферой и космическими просторами принято считать рубеж в 100 км. Эту черту называют линией Кармана.

Давление атмосферы

Слушая прогноз погоды, мы часто слышим показатели атмосферного давления. Но что означает давление атмосферы, и как на нас это может повлиять?

Мы разобрались, что воздух состоит из газов и примесей. Каждая из этих составляющих имеет свой вес, а значит, и атмосфера не невесома, как считали до XVII века. Атмосферное давление - это сила, с которой все слои атмосферы давят на поверхность Земли и на все предметы.

Учёные провели сложные подсчёты и доказали, что на один квадратный метр площади атмосфера давит с силой 10 333 кг. Значит, человеческое тело подвержено давлению воздуха, вес которого равен 12-15 тонн. Почему же мы не ощущаем этого? Спасает нас своё внутреннее давление, которое и уравновешивает внешнее. Можно ощутить давление атмосферы, находясь в самолёте или высоко в горах, так как атмосферное давление на высоте значительно меньше. При этом возможен физический дискомфорт, закладывание ушей, головокружение.

Об атмосфере, окружающей можно сказать много всего. Мы знаем о ней множество интересных фактов, и некоторые из них могут казаться удивительными:

  • Вес земной атмосферы составляет 5 300 000 000 000 000 тонн.
  • Она способствует передаче звука. На высоте больше 100 км это свойство исчезает из-за изменения состава атмосферы.
  • Движение атмосферы спровоцировано неравномерным нагревом поверхности Земли.
  • Для определения температуры воздуха используют термометр, а для того, чтобы узнать силу давления атмосферы, - барометр.
  • Наличие атмосферы спасает нашу планету от 100 тонн метеоритов ежедневно.
  • Состав воздуха был фиксированным несколько сотен миллионов лет, но стал изменяться с началом бурной производственной деятельности.
  • Считается, что атмосфера простирается вверх на высоту 3000 км.

Значение атмосферы для человека

Физиологическая зона атмосферы составляет 5 км. На высоте 5000 м над уровнем моря у человека начинает проявляться кислородное голодание, что выражается в снижении его работоспособности и ухудшении самочувствия. Это показывает то, что человек не сможет выжить в пространстве, где нет этой удивительной смеси газов.

Все сведения и факты об атмосфере только подтверждают её важность для людей. Благодаря её наличию и появилась возможность развития жизни на Земле. Уже сегодня, оценив масштабы вреда, который человечество способно своими действиями наносить дающему жизнь воздуху, нам следует задуматься о дальнейших мерах сохранения и восстановления атмосферы.